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Introduction

The field of quantum gravity can perhaps be described as the search for the holy
grail of modern physics. Although Einstein’s theory of General Relativity pro-
vides an extremely successful description of gravity on a wide range of scales1,
the fact that it describes gravity as a classical force is fundamentally inconsistent
with the fact that matter (and everything else) in the universe behaves quantum
mechanically. Indeed the classical description of gravity is naturally expected to
break down at Planck scale energies EPl =

√
~c5/G ∼ 1019 GeV.

Since such high energy scales are at present, as well as in the near future, virtually
inaccessable in laboratory experiments, the traditional approaches to quantum
gravity are guided almost exclusively by mathematical consistency. However, it
became clear about two decades ago [2] that astronomical observations may in
fact be used to probe quantum gravity effects, the reason being that the large
distances that astronomical photons travel can lead to a significant magnification
of a priori extremely small quantum gravity effects. A much studied such effect
is a possible energy dependence of photon velocities. Such an energy dependence
might be inferred by detecting differences in the arrival times of photons of dif-
ferent wavelengths that are emitted in gamma ray bursts [2, 3, 4, 5, 6, 7, 8].
This has led to the rise of an alternative research program, which goes under the
name Quantum Gravity Phenomenology (see [9] for a review). It prioritizes the
connection to these kinds of experiments and aims to construct phenomenologi-
cal descriptions of quantum gravity effects that are in fact testable or might be

1General Relativity has been tested succesfully on distance scales ranging from 10−6 m
[1] to astrophysical scales, (effects often attributed to) dark matter and dark energy being a
possible signal that the theory might not work on larger scales. But note that there is a truly

enormous gap between 10−6 m and the Planck length `Pl =
√

~G
c3 ∼ 10−35 m.

1
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testable in the near future. Among the most promising such effects are departures
from Poincaré /Lorentz invariance and modified energy-momentum dispersion re-
lations2.
In the realm of quantum gravity phenomenology an important role is played
by semi-classical models, which use a classical framework – often Hamiltonian
mechanics – to describe the physics, yet nevertheless contain Planck-scale mod-
ifications to the classical equations. We might say that these models correspond
to the limiting case ~→ 0. If we send G→ 0 at the same time, quantum gravity
effects can manifest through the ratio ~/G, corresponding to the Planck energy
EPl =

√
~c5/G, which is still a free parameter in this limit. We then arrive

in the realm of deformations of Special Relativity, the deformation parameter
being the Planck energy. Just as the speed of light is an invariant in Special
Relativity, the Planck energy should be a second relativistic invariant in these
deformed theories, which means that Poincaré transformations, and hence the
infinitesimal symmetry algebra, must be modified as well in order to achieve this.
A very interesting and much-studied candidate for such a deformed symmetry
algebra is the so-called κ-Poincaré Hopf algebra [10, 11, 12, 13]. Mathematically
this is the most studied Hopf algebra deformation of the Poincaré algebra, and
from a physics point of view there are compelling arguments suggesting that
this algebra might emerge in certain limits of quantum gravity [14, 15, 16, 17]3.
Although the arguments are mainly based on the 2+1 (and 3)4 dimensional case
(with the exception of [16]), where gravity can be described by a topological field
theory that has no dynamical degrees of freedom, the κ-Poincaré Hopf algebra
is well-defined in any number of dimensions, so it is also very much of interest
to study its implications for physics in 3+1 dimensions.
Since its discovery in the early 90’s [10, 11, 12] the κ-Poincaré Hopf algebra
has been the subject of a lot of research, often in connection with physics. A
major advancement was the formulation of this Hopf algebra in the so-called bi-
crossproduct basis [13], which is presently its most encountered form. As shown
in [21] the κ-Poincaré algebra, being a sufficiently nice so-called h-adic Hopf alge-

2Modified dispersion relations can in particular be related to the energy dependence of
photon velocities.

3Other authors argue that it is not the κ-Poincaré algebra that emerges but some other
deformed algebra [18, 19, 20].

4That is, Euclidean
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bra, has the power to completely specify a semi-classical model of interacting par-
ticles – including modified dispersion relation, modified momentum conservation
law and modified Poincaré transformations – that reduces to Special Relativity
when the deformation parameter κ (which is identified with the Planck energy),
tends to infinity (or, equivalently, when all energies and momenta considered are
much smaller than the Planck scale). This model, which we refer to simply as the
κ-Poincaré model, will be the main object of study in this thesis. It is very much
relevant to quantum gravity phenomenology, as it makes a number of predictions
(e.g. an energy-dependent photon velocity) that might actually be tested by the
astronomical observations alluded to above.
Before going into more detail about the model and its role in this thesis, let
us stress one of its important features, namely that spacetime locality becomes
relative to the observer. What this means is that when particles interact with
each other then, depending on the observer, the particles’ worldlines need not
meet at a single point in spacetime. Locality of an interaction is only guaranteed
for observers that are close5 to the interaction. For observers far away from the
interaction it may look like the interaction is nonlocal. Of course, even though
locality becomes dependent on the observer in this way, there still has to be an
objective, observer-independent, account of the actual physics in each scenario,
and this account is provided in phase space. Each particle has an objective tra-
jectory in the phase space manifold, although the coordinates of this trajectory
(momentum coordinates as well as spacetime coordinates) may depend on the
observer6. These ideas have been dubbed Relative Locality and are neatly de-
scribed by the formalism proposed recently in [22], which generally goes under
the same name. To distinguish the general idea of the relativity of locality and
the specific formalism of [22] we will refer to the latter as the Relative Locality
framework (RLF) throughout this thesis. The RLF connects physical properties
such as the relativity of locality to the geometry of momentum space, allowing
for momentum space to be a curved manifold instead of merely the linear tan-

5The term close needs to be defined clearly for this statement to make sense. We will defer
this to chapter 2.

6This is very similar to the fact in Special Relativity that different observers will always agree
on the (abstract) spacetime point in the spacetime manifold where an interaction happens, even
though they will usually not agree on the spacetime coordinates, because each observer has its
own coordinate system.
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gent space to the spacetime manifold [23]. Indeed, spacetime is now described
as the cotangent space to momentum space, and phase space is by definition the
corresponding cotangent bundle. Where General Relativity can be thought of
as the ~ → 0,MPl → 0 limit of a fundamental theory of quantum gravity, while
G remains nonvanishing, the RLF can be thought of as (a candidate for) the
~ → 0, G → 0 limit of quantum gravity, while instead the Planck mass remains
finite. General Relativity deals with curved spacetime and flat momentum space;
the RLF deals with curved momentum space and flat spacetime. This realizes a
kind of duality between spacetime and momentum space that was already envi-
sioned by Max Born in 1938 [24] as a prerequisite for being able to unite General
Relativity with Quantum Mechanics.
Now let us return to the earlier mentioned paper [21]. Here the κ-Poincaré model
was derived and it was shown that it corresponds to a de Sitter momentum space
geometry in the context of the RLF. One of the most counter-intuitive results of
the paper was that the deformed boosts [25], induced by the κ-Poincaré algebra,
must act on interacting particles in a nontrivial way: particles do not necessarily
transform with the same boost rapidity. Instead, the boost rapidity of each par-
ticle that participates in a given interaction vertex is influenced (via a so-called
backreaction) by the momenta of other particles in that vertex. The explicit
form of this backreaction is determined by the requirement that the deformed
momentum conservation law behaves covariantly under the deformed boosts (or
equivalently, that the deformed momentum conservation law does not pick out a
preferred reference frame). From the results of [21] it looked like the κ-Poincaré
model was invariant under the modified Poincaré transformations provided they
were implemented in this way. However, it turns out that there remains an issue
with the well-definition of boosts in the case that particles are allowed to inter-
act more than once in their lifetimes: when a particle interacts twice, it must
participate in two interaction vertices and hence it gets a backreaction from both
of these vertices. These two backreactions are in general not compatible with
each other and this leads to inconsistencies when multiple interactions are con-
sidered. The main result of this thesis is a proposal for implementing the boosts
on interacting particles in a modified way. This proposal leads to invariance un-
der boosts in many interacting scenarios, although there still remain scenarios
in which invariance is lost. Our approach has some connections to the approach
to translational invariance for multiply interacting particles proposed in [26] (see
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also [27]). We focus in this thesis on the 1+1 dimensional case, but the result
can be extended easily to 3+1 dimensions.
Another result of our research is that the κ-Poincaré model is not covariantly
compatible with the Relative Locality framework (RLF), meaning that, although
the model can be accurately described by the RLF, this formulation does not be-
have covariantly under all κ-Poincaré transformations. The reason is that when
the model is described by the RLF there is an additional equation, relating the
endpoints of particle worldlines in interactions, and this equation is not invariant
under boosts. It turns out that when one replaces the κ-Poincaré composition
law by another, covariant7, composition law – the one found in [28]) – then boosts
do become symmetries of the full RLF, but in that case it is the translations that
pose a problem, because the translations as established in [26] are not applicable
in this case.

Structure of the Thesis

We will be dealing in this thesis with a lot of concepts that are probably not
familiar to a lot of physicists (notably curved momentum spaces and h-adic Hopf
algebras). We start therefore in part I by introducing these concepts. Chapter
1 will be a light start, covering de Sitter space, which will in fact be familiar
to most. Chapter 2 deals with the general framework of Relative Locality and
curved momentum spaces, and in particular, in section 2.3 we discuss the case
in which the momentum space geometry is taken to be de Sitter. Chapter 3
then introduces the theory of Hopf algebras, and in particular that of h-adic
Hopf algebras, of which the κ-Poincaré Hopf algebra (section 3.5) is an exam-
ple. We develop some theory about this type of Hopf algebra which is usually
omitted in physics text, but in our opinion is essential to understand because it
is what allows one to do certain manipulations, like calculating expressions term
by term in power series, or to make use of so-called nonlinear basis transforma-
tions, generalizing the linear basis transformations that are used in the theory
of Lie algebras. This then concludes part I and brings us to part II, which is all
about the κ-Poincaré model. Chapter 4 introduces the free κ-Poincaré particle,
chapter 5 adds to this the description of a single interaction, and in chapter 6
we identify the problem that arises when particles interact more than once, and

7Covariant in the conventional way, i.e., without the need of a backreaction.
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we propose our solution. Chapter 7 investigates the effects of replacing the κ-
Poincaré composition law by the alternative momentum composition law that
was found in [28]. And, finally, in chapter 8 we conclude by summarizing our
results and discussing the possibilities for future research.



Part I

Prerequisites

7





Chapter 1

De Sitter Space

1.1 Comoving Coordinates

De Sitter (dS) space is an analog in Lorentzian signature of what in Euclidean
signature is the sphere. N + 1 Dimensional de Sitter space of ‘radius’ κ > 0 is
defined as the submanifold of N + 2 dimensional Minkowski space consisting of
those points (η0, . . . , ηN+1) that satisfy

−ηµνηµην = −(η0)2 +
N+1∑
i=1

(ηi)2 = κ2, (1.1)

endowed with the induced metric. Here ηµν = diag(1,−1,−1, . . . ,−1) is the
ambient Minkowski metric. Part of this submanifold, one might say half of it,
may be parameterized by coordinates (x0, . . . , xN) ∈ RN+1 via the embedding

η0 = κ sinh

(
x0

κ

)
+
|~x|2ex

0

κ

2κ
, (1.2)

ηi = xiex
0/κ, (1.3)

ηN+1 = κ cosh

(
x0

κ

)
− |~x|

2e
x0

κ

2κ
, (1.4)

where i = 1, . . . , N and |~x|2 =
∑N

i=1(xi)2. These so-called comoving coordinates
cover that part of de Sitter space for which η0 + ηN+1 > 0, which is visualized in

9



10 CHAPTER 1. DE SITTER SPACE

fig. 1.1. The inverse of the embedding map is given by

x0 = κ ln

(
η0 + ηN+1

κ

)
, xi =

κ ηi

η0 + ηN+1
. (1.5)

The induced metric of dS space in the comoving chart can now be found as the
pullback of the Minkowski metric under the embedding map, which in coordinates
is given by

gab = ηµν
∂ηµ

∂xa
∂ην

∂xb
= diag

(
1,−e2x0/κ,−e2x0/κ, . . . ,−e2x0/κ

)
. (1.6)

Hence the de Sitter line element in comoving coordinates is given by

ds2 = (dx0)2 − e2x0/κδijdx
idxj. (1.7)

1.2 Killing Vector Fields and the dS Algebra

The aim of this section is to describe the symmetries of de Sitter space in N + 1
dimensions. We list the Killing vectors fields (KVFs) and use them to derive the
(N + 1 dimensional) de Sitter algebra so(N + 1, 1). The (finite) isometries can
then be found by integrating the KVFs. We will not explicitly do this, as we will
not need it.

From the metric (1.6) the following nonvanishing Christoffel symbols of can be
derived, where H = 1/κ,

Γ0
ii = He2Ht, Γi0i = Γii0 = H, i = 1, . . . N. (no summation) (1.8)

Killing’s equation ∇µ ξν +∇ν ξµ = 0 then contains (N+1)(N+2)/2 independent
components, given (in terms of ξ with upper indices) by

∂0 ξ
0 = 0, (1.9)

∂i ξ
0 = e2Hx0∂0 ξ

i, (1.10)

∂i ξ
i = −Hξ0, (no summation) (1.11)

∂iξ
j = −∂jξi. (1.12)
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Figure 1.1: De Sitter space in 1+1 dimensions embedded as a hyperboloid in
2+1 dimensional Minkowski space. The green part of the hyperboloid, separated
from the yellow part by the blue plane, is the patch of dS space that is covered
by comoving coordinates.
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These can be seen to have the solutions Pµ, Rij and Ni for µ = 0, . . . , N , i =
1, . . . , N , given by

P0 = ∂0 −
∑
i

Hxi∂i, Pi = ∂i, Rij = xi∂j − xj∂i,

Ni = xi∂0 −Hxixj∂j +

(
1− e−2Hx0

2H
+
H

2
|~x|2
)
∂i. (1.13)

These comprise (N+1)(N+2)/2 linearly independent KVFs (since Rij = −Rji),
so we conclude that the manifold is maximally symmetric and that any other
KVF is a linear combination of the ones above. From a physics perspective, the
KVFs Pµ are the generators of translations, the Rij of rotations, and the Ni of
boosts. In the limit H → 0 they reduce to the standard translations, rotations
and boost on Minkowski space. The KVFs form an so(N + 1, 1) algebra,

[Rij, Rkl] = −δikRjl − δjlRik + δilRjk + δjkRil, [Rij, Pk] = −δikPj + δjkPi,

[Rij, P0] = 0, [Ni, Pj] = −δijP0 +HRij, [Ni, P0] = −Pi +HNi,

[Rij, Nk] = −δikNj + δjkNi,

[Ni, Nj] = Rij, [Pi, Pj] = 0, [P0, Pi] = HPi, (1.14)

which can be formulated even more compactly by defining the antisymmetric
matrix Mµν , where Mij = Rij and Mi0 = Ni, so that the algebra reads

[Mµν ,Mρσ] = ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ (1.15)

[Mµν , Pρ] = ηµρPν − ηνρPµ −H (ηµ0Mνρ − ην0Mµρ) (1.16)

[Pi, Pj] = 0, [P0, Pi] = HPi. (1.17)

From this we quickly see that the algebra is a deformation of the Poincaré algebra,
with deformation parameter H.

1.3 dS Space in 1+1 Dimensions

Here we specialize to 1 + 1 dimensions, the case with which we will be concerned
the most throughout the thesis. In this case, the comoving dS metric reads
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ds2 = dt2 − e2Htdx2 and the independent KVFs, eq. (1.13), reduce to

P0 = ∂t −Hx∂x, (1.18)

P1 = ∂x, (1.19)

N ≡ N1 = x ∂t +

(
1− e−2Ht

2H
− H

2
x2

)
∂x. (1.20)

These comprise one (generalized) time translation, one spatial translation and
one boost, respectively. Eq. (1.14) shows that these KVFs satisfy the following
so(2, 1) Lie algebra,

[P0, P1] = HP1, [P0, N ] = P1 −HN, [P1, N ] = P0. (1.21)

The conserved charges1 (denoted with the same symbol as the corresponding
KVF) are

P0 = p0 −Hxp1, P1 = p1, N = xp0 +

(
1− e−2Ht

2H
− H

2
x2

)
p1, (1.22)

where the p components are lowered so that we obtain a cotangent bundle pic-
ture, which is suitable for a Hamiltonian description of physics. If we endow
the cotangent bundle with minus(!) the canonical Poisson structure2, so that
in particular {xµ, pν} = −δµν , then the conserved charges satisfy the same Lie
algebra as the KVFs (1.21) in terms of Poisson brackets:

{P0, P1} = HP1, {P0, N} = P1 −HN, {P1, N} = P0. (1.23)

This is in fact a manifestation of a the following general result.

Proposition 1. Let M be a smooth manifold and g ⊂ X(M) a Lie algebra
of smooth vector fields on M , under the commutator bracket. Then the map
Π : g → C∞(T ∗M) given by X 7→ ΠX ≡ Xµpµ is a Lie algebra homomorphism,
where the Lie algebra structure on C∞(T ∗M) is given by minus(!) the standard
Poisson bracket. We note that for the expression Xµpµ to make sense, Xµ must
be interpreted as a function on the cotangent bundle T ∗M , as must pµ.

1The conserved charge (along a geodesic xµ(λ)) corresponding to some KVF ξµ is defined
as Π = ξµpµ, where pµ = mẋµ with m the mass of the corresponding particle and the dot
representing the proper time derivative. If the mass vanishes, however, we usually set m = 1.

2Alternatively, one could use the standard Poisson structure, but change all conserved
currents by an overall minus sign.
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Proof. Let X, Y ∈ g. We compute

{ΠX ,ΠY } = Xµpν {pµ, Y ν}+ pµY
ν {Xµ, pν} = Xµpν

∂Y ν

∂xµ
− pµY ν ∂X

µ

∂xν
(1.24)

=

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
pµ = [X, Y ]µpµ = Π[X,Y ]. (1.25)

In the first step we have used the definition of the map Π and the derivation
property of the Poisson bracket. In the second step we have used the explicit
form of the Poisson bracket,

{f, g} =
∂f

∂pµ

∂g

∂xµ
− ∂f

∂xµ
∂g

∂pµ
. (1.26)

And the third step can easily be seen to be true by acting with the commutator
of two vector fields on a function.

This result has the following useful corollary.

Corollary 2. The map that sends the vector field X on M to the Hamiltonian
vector field {ΠX , ·} on T ∗M is a Lie algebra homomorphism.

Proof. The map f 7→ {f, ·} is a Lie algebra homomorphism from the smooth
functions to smooth vector fields, hence the resulting map X 7→ {ΠX , ·} is a
composition of Lie algebra homomorphisms.

And a similar result in this spirit, which will also be useful later, is the following
one.

Proposition 3. Let M be a manifold and X some vector field with flow φXt (x).
Write ΠX = Xµpµ ∈ C∞(T ∗M), and let π : T ∗M → M be the canonical pro-
jection. Let φ{ΠX ,·} be the flow of the Hamiltonian vector field corresponding to
ΠX . Then we have

π ◦ φ{ΠX ,·} = φX . (1.27)

This means that the vector field X and the vector field {ΠX , ·} generate the same
curve on the base manifold.
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Proof. The Hamiltonian (vector field) flow is determined by the (Hamilton’s)
equations

ẋµ = {xµ,ΠX} = {xµ, Xν(x)pν} = Xν(x){xµ, pν} = Xνδµν = Xµ, (1.28)

ṗµ = . . . . (1.29)

The first equation is precisely the defining equation for the flow of X itself, and
the second equation is merely a definition of what is meant by pµ, hence irrelevant
for the trajectory on the base manifold.

1.3.1 Geodesics

With the Christoffel symbols (1.8) reducing to

Γ0
11 = He2Ht, Γ1

01 = Γ1
10 = H, (1.30)

we find that the geodesic equation, ẍρ + Γρµν ẋ
µẋν = 0, contains the following

component equations

ẗ = −He2Htẋ2, (1.31)

ẍ = −2Hẋṫ. (1.32)

To solve the system of equations, we make use of the fact that the conserved
charge P1 = p1 is constant along geodesics. Let us assume for the moment that
m 6= 0. Then the conserved charges read

P1 = p1 = mg1µẋ
µ = −me2Htẋ1 = −me2Htẋ,

⇒ ẋ = −p1

m
e−2Ht. (1.33)

Plugging this into (1.31) leads to

ẗ = −
(p1

m

)2

He−2Ht (1.34)

and from this it follows, using

1

2

d

dλ

(
ṫ2
)

= ẗ ṫ = −
(p1

m

)2

He−2Ht ṫ =
1

2

d

dλ

((p1

m

)2

e−2Ht

)
, (1.35)
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that

ṫ = ±
√(p1

m

)2

e−2Ht + c1, (1.36)

with c1 an integration constant, which is found to be equal to 1 by imposing the
normalization condition

1
!

= gµν ẋ
µẋν = ṫ2 − e2Htẋ2 =

(p1

m

)2

e−2Ht + c1 − e2Ht
(p1

m
e−2Ht

)2

= c1. (1.37)

Not that by multiplying this equation by m2 it also provides us with the energy-
momentum dispersion relation

m2 = m2gµνpµpν = p2
0 − e−2Htp2

1. (1.38)

We will choose the ± sign in the expression (1.36) for ṫ to be positive, in order
to have positive time orientation and positive energy. Combining these results
with (1.33) yields

dx

dt
=
ẋ

ṫ
=

−p1
m
e−2Ht√(

p1
m

)2
e−2Ht + 1

=
−sign(p1) e−2Ht√
e−2Ht +

(
m
p1

)2
, (1.39)

which can be integrated to

x(t) = x̄+
sign(p1)

H

√e−2Ht +

(
m

p1

)2

−

√
1 +

(
m

p1

)2
 (1.40)

with x̄ = x(t = 0). This is the general form of a worldline of a massive particle
in dS spacetime. If we set m = 0, the worldline reduces nicely to

x(t) = x̄+
sign(p1)

H

(
e−Ht − 1

)
, (1.41)

Note that technically our derivation is not really valid for m = 0, for in that
case our definition of p yields p = 0, and the normalization would not be correct
either. In the massless case we should define pµ = ẋµ instead and use the nor-
malization pµp

µ = 0. (The physical momentum would then be a scalar multiple
of pµ.) The result, however, would be precisely the same as what we obtain by
simply setting m = 0 in eq. (1.40).
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1.3.2 Worldines from a Symmetry Approach

There is in fact an alternative way of finding the geodesics in de Sitter space,
namely by taking the symmetry algebra as the starting point. This approach can
be generalized to different symmetry algebras, and even (quantum) deformations
of symmetry algebras. We will find this very useful later when dealing with the
κ-Poincaré Hopf algebra, so we will here illustrate the procedure, reproducing
the results of section 1.3.1.

In a nutshell, the idea is that we represent a given Lie algebra on phase space in
terms of Poisson brackets, pick a Casimir element, which we require to be equal
to the mass-squared of the particle considered, and choose our Hamiltonian to
be proportional to the same Casimir element. This nicely implements the fact
that the Lie algebra should correspond to symmetries: all elements of the (repre-
sented) Lie algebra are symmetries if and only if they all Poisson-commute with
the Hamiltonian; and in particular the mass should be an invariant. If the Lie
algebra has more than one Casimir (modulo scaling) then the choice of Hamil-
tonian is, of course, ambiguous in this setting. However, a standard choice can
always be made whenever the Killing form of the Lie algebra is nondegenerate:
the quadratic Casimir induced by the Killing form.
In the present case of 1 + 1 dS space, the Lie algebra is so(2, 1), eq. (1.21) and,
by prop. 1, we already have a natural representation of the algebra on phase
space, namely the one consisting of the conserved charges (1.22) of the Killing
vector fields. The quadratic Casimir3 of the algebra is

C = (P0)2 − (P1)2 + 2HNP1. (1.42)

This Casimir will play a double role. First we will require it, for each given
particle, to be equal to its mass-squared. Second, it will be (proportional to) our
Hamiltonian, generating the evolution in an affine parameter λ. Using our phase
space representation (1.22) of the algebra, the Casimir reduces to

C = (p0)2 − e−2Hx0(p1)2 = m2. (1.43)

3The quadratic Casimir corresponding to the Killing form defined as
K(X,Y ) =Tr(ad(X)ad(Y )) has in fact an extra multiplicative factor 1/2H2 in front of
it. We do not include it.
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Already we see that this dispersion relation is identical to the one we obtained
in the previous section using General Relativity, eq. (1.38). Note again that
we need to take minus the standard Poisson structure on phase space for our
representation to actually be a representation. We must now split the analysis
into two parts: massive particles and massless particles. They require a slightly
different Hamiltonian.

Massive Particles

As mentioned above, we will require that C = m2, but as Hamiltonian we cannot
just take C, because of dimensional consistency4. Therefore we take5 H = C/2m,
the m factor being there to make all dimensions match, and the factor 2 being
there in order that the canonical p0, p1 used here will correspond to the (physical)
momentum, i.e., the one from the General Relativity approach of the previous
section. Hamilton’s equations read

ẋ0 = {x0, H} =
p0

m
, (1.44)

ẋ1 = {x1, H} = −p1

m
e−2Hx0 , (1.45)

ṗ0 = {p0, H} = −H(p1)2

m
e−2Hx0 , (1.46)

ṗ1 = {p1, H} = 0. (1.47)

The last equation shows that p1 must be a constant. Using the dispersion relation,
we may rewrite the first two equations as

mẋ0 = ±
√
e−2Hx0(p1)2 +m2, (1.48)

mẋ1 = −p1e
−2Hx0 , (1.49)

4If we took just C as our Hamiltonian, then Hamilton’s equations on the one hand and the
dispersion relation on the other hand would each require the canonical momentum pµ to have
a different dimension, contradicting each other.

5Instead of taking this Hamiltonian and requiring C = m2, we might take the Hamiltonian
C/2m−m/2, requiring that this Hamiltonian vanishes on physical (i.e. on-shell) trajectories.
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where, as before, we choose ± = + in order that we have positive time orientation
and positive energy. Thus the quotient ẋ1/ẋ0 satisfies (assuming p1 6= 0)

ẋ1

ẋ0
=

− p1e
−2Hx0√

e−2Hx0(p1)2 +m2
=
−sign(p1) e−2Hx0√
e−2Hx0 +

(
m
p1

)2
. (1.50)

This is exactly the same equation as (1.39), so the projected worldlines in this
case must also be given by (1.40). It can be checked that with this solution
all of Hamilton’s equations are satisfied and the dispersion relation as well. The
relation between pµ and xµ is also the same as in the former analysis. That means
that the canonical momenta pµ used here are simply the (index-lowered versions
of the) physical momenta. Hence we have found that the physics described by this
Hamiltonian setup is identical to that described in the previous section using the
framework of General Relativity. As already mentioned earlier there are some
ambiguities in this framework: 1) Why did we use the specific Casimir C to
represent the mass of the particle? 2) Why did we use C/2m as Hamiltonian?
The factor 1/m was necessary from dimensional analysis, but the numerical
factor 1/2 could have been anything, a priori. Note however that rescaling the
Hamiltonian by a numerical factor does not affect the (projected) worldlines,
so the latter ambiguity amounts in fact to nothing more than a mathematical
convention. And in 1 + 1 dimensions there is only one Casimir (up to scaling) in
the dS algebra, so in this particular case there are in fact no ambiguities at all.
Actually, even in 1 + 3 dimensions, although there are two linearly independent
Casimir elements in the dS algebra, only one of those will correspond to the
Special Relativistic energy-momentum dispersion relation in the flat limit, so
in that case there is no ambiguity either. Nevertheless, these are all particular
cases and in the most general case the ambiguity of picking a Casimir element
will remain.

Massless Particles

For massless particles we cannot divide by m, so a different Hamiltonian is
needed. In this case, however, we can use the simpler choice of Hamiltonian6,

6In this case we can formulate the setup alternatively as being that of an Hamiltonian
H = C/2 generating the evolution in an affine parameter, with the additional requirement



20 CHAPTER 1. DE SITTER SPACE

H = C/2. We are not plagued by dimensional inconsistencies now, because the
equation C = m2 can in this case simply be reduced to C = 0. This equation
does not require that C must have the dimension of mass-squared, and therefore
it does not contradict Hamilton’s equations. Hamilton’s equations read

ẋ0 = {x0, H} = p0, (1.51)

ẋ1 = {x1, H} = −p1e
−2Hx0 , (1.52)

ṗ0 = {p0, H} = −H(p1)2e−2Hx0 , (1.53)

ṗ1 = {p1, H} = 0. (1.54)

Using the dispersion relation, we may rewrite the first two equations as

ẋ0 = e−Hx0 |p1|, (1.55)

ẋ1 = −p1e
−2Hx0 , (1.56)

where we have again chosen positive time orientation. Thus the quotient ẋ1/ẋ0

satisfies (assuming p1 6= 0)

ẋ1

ẋ0
=
− p1e

−2Hx0

e−Hx0|p1|
= −sign(p1) e−Hx0 . (1.57)

This is again the same equation as (1.39), with m = 0. Hence the worldlines of
massless particles, in this approach, are also the same ones as those obtained by
the conventional general relativity approach.

The preceding results bear the question why the two completely different ap-
proaches, section 1.3.1 versus section 1.3.2, yield the same physics. Appendix A
contains a discussion on this matter.

1.3.3 Redshift

With the relevant formulas for the worldlines of particles at hand, we are now in
the position to go a bit more into the actual physics in de Sitter spacetime. In
this section we demonstrate the redshift effect. The analysis will be structured

that H = 0 for physical (i.e. on-shell) particles.
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in such a way that we can repeat a similar analysis for de Sitter momentum space
later. This will allows us in section 4.4.1 to notice an interesting duality between
these two settings.

We make use of the Hamiltonian framework as in section 1.3.2. With the phase
space representation of the KVFs (eq. (1.22)), we can derive the action of the
symmetries on phase space. Let us recall how this works. Consider a transla-
tion with translation parameter aµ. With Pµ the generators of translations, the
symmetry generator will be aµPµ, which determines a Hamiltonian vector field
{ρ(aµPµ), ·} on the cotangent bundle, where ρ is the representation, which we
will omit from here onwards. This vector field generates a flow, defined by the
equations

ẋµ = {xµ, aνPν}, ṗµ = {pµ, aνPν}. (1.58)

These are just Hamilton’s equations with the Hamiltonian replaced by the ap-
propriate symmetry generator. The solutions to these equations are the integral
curves to the vector field corresponding to the symmetry, that is, they are the
corresponding finite symmetries. In the case of translations, we obtain

ẋ0 = {x0, a0(p0 −Hx1p1) + a1p1} = a0{x0, p0} = −a0, (1.59)

ẋ1 = {x1, a0(p0 −Hx1p1) + a1p1} = a0Hx1 − a1, (1.60)

ṗ0 = {p0, a
0(p0 −Hx1p1) + a1p1} = 0, (1.61)

ṗ1 = {p1, a
0(p0 −Hx1p1) + a1p1} = −a0Hp1. (1.62)

Solving the equations is a simple exercise and yields

x0(λ) = x̄0 − a0λ, (1.63)

x1(λ) = ea
0Hλ

(
x̄1 +

a1

a0H

(
e−a

0Hλ − 1
))

, (1.64)

p0(λ) = p̄0, (1.65)

p1(λ) = p̄1e
−a0Hλ, (1.66)

with the barred symbols representing their value at λ = 0. The result of the
symmetry transformation is now obtained by setting λ = 1. Thus we see that a
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translation with parameter aµ is given by

x0 → x0 − a0, (1.67)

x1 → ea
0H

(
x1 +

a1

a0H

(
e−a

0H − 1
))

, (1.68)

p0 → p0, (1.69)

p1 → p1e
−a0H . (1.70)

Note that these reduce to the ordinary translations on 1+1 Minkowski space in
the limit H → 0.
We now consider two observers, Alice and Bob. Alice will emit two photons
with the same energy from her spatial origin. One at x0 = 0 and the other at
some other time x0 = x̃0 on her clock. Bob is defined by an aµ-translation with
respect to Alice7 such that the first photon crosses Bobs spacetime (ST) origin.
Then the second one will automatically cross his spatial origin as well. We are
interested in the relation between the two energies measured by Bob when each
of the particles crosses his spatial origin.

Alice will see the first photon move along the worldline

x1
A =

1

H

(
1− e−Hx0A

)
, (1.71)

assuming that the particle moves to the ‘right’. Applying the translation to x
and t, we find that Bob sees the worldline

x1
B =

1

H

(
a1

a0
− 1

)(
1− e−a0H

)
+

1

H

(
1− e−Hx0B

)
. (1.72)

The requirement that the photon crosses Bob’s ST origin then translates to
x1
B(x0

B = 0) = 0, or equivalently,

a1 = a0. (1.73)

7This means by definition that all xµ, pµ coordinates that Bob sees are those that are found
by translating by aµ the coordinates that Alice sees, via the translations derived above.
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Suppose that Alice emits the first photon with an energy8 pA@A
0 when her clock

ticks x0
A@A = 0. Here we use the label A@A to denote that the quantity is

evaluated by Alice, “A”, when the photon is at Alice’s spatial origin, “@A”.
Using the dispersion relation (1.43) we can write

pA0 = pA1 e
−Hx0A = pA@A

0 e−H(x0A−x0A@A), (1.74)

so that from Alice’s point of view the photon will have an energy

pA@B
0 = pA@A

0 e−H(x0A@B−x
0
A@A), (1.75)

when it crosses Bob’s spatial origin, which has coordinate x0
A@B = a0. In order

that we can use the formulas again for the second photon, we explicitly keep the
x0
A@A-dependence, despite the fact that x0

A@A = 0 for this photon. Since p0 is
invariant under under translations, Bob also measures this energy:

pB@B
0 = pA@A

0 e−H(x0A@B−x
0
A@A). (1.76)

The second photon

Now suppose Alice emits a second photon, with the same energy p̃A@A
0 = pA@A

0 ,
and in the same direction. She does this when her clock reads x̃0

A. Since we kept
the dependence on x0

A in our formulas for the first photon, we immediately know
the formula for the second photon:

p̃B@B
0 = p̃A@A

0 e−H(x̃0A@B−x̃
0
A@A) = pA@A

0 e−H(x̃0A@B−x̃
0
A@A). (1.77)

The relation between the two energies measured by Bob is therefore given by

p̃B@B
0 = e−H(∆Ax̃

0−∆Ax
0)pB@B

0 . (1.78)

where we have defined the travel times according to Alice

∆Ax
0 := x0

A@B − x0
A@A, ∆Ax̃

0 := x̃0
A@B − x̃0

A@A. (1.79)

We will see in section 4.4.1 that if, instead of spacetime, momentum space has
de Sitter geometry, there is an analogous scenario in which we obtain a similar
equation, eq. (4.55), where ∆x and p are interchanged with respect to the present
equation (1.78), exposing an interesting duality between the two models.

8Note that the pµ in this analysis actually represent the canonical momenta. The physical
energy and momentum are a scalar multiple of these.
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1.4 dS Space in 3+1 Dimensions

In this section we will generalize some of the 1 + 1 dimensional results to 3 + 1
dimensions. In this case one usually defines the rotation about the ith axis as
Ri = −1

2
εijkRjk in terms of the rotations (1.13) and the completely antisymmetric

symbol εijk with ε123 = 1. The algebra (1.14) then becomes

[P0, Pi] = HPi, [P0, Ni] = Pi −HNi, [P0, Ri] = 0,

[Pi, Pj] = 0, [Pi, Nj] = δijP0 −HεijkRk, [Pi, Rj] = εijkPk,

[Ni, Nj] = −εijkRk, [Ri, Rj] = εijkRk, [Ni, Rj] = εijkNk.
(1.80)

The conserved charges corresponding to the KVFs (which we also denote simply
by P0) are

P0 = p0 −Hx1p1 −Hx2p2 −Hx3p3, P1 = p1, P2 = p2, P3 = p3,

(1.81)

R1 = x3p2 − x2p3, (1.82)

R2 = −x3p1 + x1p3, (1.83)

R3 = x2p1 − x1p2, (1.84)

N1 = x1p0 +

[
1− e−2Hx0

2H
− H

2

(
(x1)2 − (x2)2 − (x3)2

)]
p1−Hx1x2p2−Hx1x3p3,

(1.85)

N2 = x2p0 +

[
1− e−2Hx0

2H
− H

2

(
(x2)2 − (x1)2 − (x3)2

)]
p2−Hx1x2p1−Hx2x3p3,

(1.86)

N3 = x3p0 +

[
1− e−2Hx0

2H
− H

2

(
(x3)2 − (x1)2 − (x2)2

)]
p3−Hx1x3p1−Hx2x3p2.

(1.87)

As in the 1 + 1 dimensional case, if we now endow the cotangent bundle with
minus(!) the canonical Poisson structure, so that in particular {xµ, pν} = −δµν ,
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then the conserved charges satisfy the same Lie algebra (in terms of Poisson
brackets) as the KVFs, (1.80), which is guaranteed by prop. 1 . So again we
immediately have a representation of the KVF Lie algebra on phase space.

The quadratic Casimir9 can be calculated to be

C = (P0)2 − ~P 2 +H
(
~P · ~N + ~N · ~P

)
−H2 ~R2 (1.88)

and in our phase space representation this Casimir becomes

C = (p0)2 − e−2Hx0
(
(p1)2 + (p2)2 + (p3)2

)
. (1.89)

Notice that we can write this as C = gµνpµpν .

1.4.1 Geodesics

To find the geodesics in 1 + 3 dimensional de Sitter space, we will focus first only
on worldlines that cross the spacetime origin. Those are easily found. Hamilton’s
equations are

ẋµ = pµ, ṗ0 = −He−2Hx0
(
(p1)2 + (p2)2 + (p3)2

)
, ṗi = 0. (1.90)

The first thing to notice is that if p2 = p3 = 0 the equations reduce to the 1 + 1
dimensional ones. Hence the solutions we found in 1 + 1 dimensions are here
solutions as well, provided we set p2 = p3 = 0. We can find the other ones using
the symmetries of the metric. All we have to do is take a 1 + 1 dimensional
solution, rotate it, and then translate it (i.e., evaluate it in coordinates which are

9Actually, if we would define the Killing form as K(X,Y ) =Tr(ad(X)ad(Y )) then our C
would have an extra factor 1/6H2. We will not include this factor.
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rotated and then translated). Rotations act trivially:

R(θ, φ, ψ)xµ =
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




1 0 0 0
0 cosφ 0 sinφ
0 0 1 0
0 − sinφ 0 cosφ




1 0 0 0
0 1 0 0
0 0 cosψ sinψ
0 0 − sinψ cosψ



x0

x1

x2

x3


(1.91)

R(θ, φ, ψ)pµ =
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




1 0 0 0
0 cosφ 0 sinφ
0 0 1 0
0 − sinφ 0 cosφ




1 0 0 0
0 1 0 0
0 0 cosψ sinψ
0 0 − sinψ cosψ



p0

p1

p2

p3


(1.92)

and a translation with parameters aµ acts as follows,

x0 → x0 − a0, p0 → p0, (1.93)

xi →
(
xi − ai

a0H

)
ea

0H +
ai

a0H
, pi → pie

−a0H , (1.94)

which can be found by integrating the Poisson action of the translation genera-
tors. The thus obtained worldlines are given by

xi(x0) = x̄i +
pi

H|~p |2

(√
|~p |2e2a0H + 1−

√
|~p |2e−2x0H + 1

)
, x̄i =

ai(1− ea0H)

a0H
,

(1.95)

where x̄i = xi(x0 = −a0) and |~p |2 =
∑

(pi)
2. Actually the leftmost plus sign

in the worldline can also be chosen to be a minus, but that choice corresponds
to ẋ0 being negative, resulting in curves with incorrect time orientation and
negative energies and such; we disregard those cases. We can immediately see
that all geodesics must be of this form. Because for any x̄i and any a0 6= 0 there
exist ai such that x̄i = xi(x0 = −a0), meaning that the corresponding geodesic
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crosses the point (−a0, x̄1, x̄2, x̄3). If we also choose the momentum (p0, p1) of
the 1+1 dimensional solution and rotation angles conveniently, we may obtain
any possible momentum pµ (in particular at that point), leading to any possible
pµ = ẋµ, so that the uniqueness of geodesics guarantees that we have found all
possible worldlines.:

xi(x0) = x̄i+
pi

H|~p |2

(√
|~p |2e−2a0H + 1−

√
|~p |2e−2x0H + 1

)
, x̄i = xi(x0 = a0).

(1.96)

Geodesic Distance to the Origin

The geodesic distance from a point xµ to the origin (the origin is defined simply
as the point which has vanishing comoving coordinates) can now be computed
by parameterizing a geodesic from 0 to xµ as

xµ(t) =
(
t, x1(t), x2(t), x3(t)

)
. (1.97)

in terms of (1.96) with x̄i = 0. It follows that

ẋ0 = 1, ẋi =
pi e
−2tH√

|~p |2e−2tH + 1
, (1.98)

so for points in dS space that are separated from the origin by a timelike geodesic
(i.e., gµν ẋ

µẋν > 0) we can calculate

d(xµ, 0) =

∫ x0

0

√
gµν ẋµẋν dt =

∫ x0

0

√
1− |~p |2e−2tH

|~p |2e−2tH + 1
dt

=

∫ x0

0

1√
|~p |2e−2tH + 1

dt =
1

H
ln
(√

p2 + e2Ht + eHt
) ∣∣∣∣x0

0

=
1

H
ln

(√
p2 + e2Ht + eHt√
p2 + 1 + 1

)
. (1.99)

This expression still contains p, which we would like to eliminate in favor of xµ.
Something that comes to mind is the fact that the worldline xi(t) (with x̄i = 0)
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depends on ~p, and that for a given t, the map ~p 7→ ~x(t) is injective and hence
invertible on the correct domains. That means we can write ~p = ~p (t, ~x) as a
function of the point (t, ~x) that the geodesic crosses and for which we want to
calculate the distance to the origin. We can then substitute |~p |2 → |~p (t, ~x)|2 and
that will yield d(xµ, 0) entirely in terms of xµ, which is our aim. Here we state
the results. The map (t, x) 7→ |~p |2 is given by

|~p |2(t, ~x) =
4H2|~x|2e4Ht

e4Ht (H2|~x|2 − 1)2 − 2e2Ht (H2|~x|2 + 1) + 1
(1.100)

and this leads to the geodesic distance

d(xµ, 0) =
1

H
ln



√√√√ 16H4|~x|4e8Ht(
e4Ht (H2|~x|2 − 1)2 − 2e2Ht (H2|~x|2 + 1) + 1

)2 + e2Ht + eHt

√√√√ 16H4|~x|4e8Ht(
e4Ht (H2|~x|2 − 1)2 − 2e2Ht (H2|~x|2 + 1) + 1

)2 + 1 + 1

.
(1.101)

As stated earlier, this formula holds for all xµ which are seperated from 0 by a
timelike geodesic. The formula is not very appealing on an aesthetic level, but
fortunately there exists another formulation, namely

D(xµ, 0) =
1

H
arccosh

(
−H2ηµνX

µXν
)

=
1

H
arccosh

(
cosh (Ht)− 1

2
H2|~x|2eHt

)
,

(1.102)

withXµ the embedding coordinates of Minkowski space, ηµν = diag(1,−1,−1,−1).
This is a more common formula for the geodesic distance in de Sitter space10 and
it can be derived by considering de Sitter space as a subspace of Minkowski space.
Clearly it does not look anything like our formula above, but nevertheless the

10A different version of the formula uses arccos instead of arccosh (e.g.
https://arxiv.org/pdf/hep-th/0110007.pdf). The difference between the two is, effec-
tively, a factor i. The advantage of our version is that the distance traced out by timelike
trajectories is real, in contrast to that of spacelike trajectories.
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two formulas coincide for all points in dS space that are separated by a timelike
geodesic from 0. This is most easily seen by substituting in D(xµ, 0) the geodesic
to the origin x1 = x1(x0), in terms of some suitable pµ (which always exists be-
cause by assumption there exists a timelike geodesic to the point xµ), and then
noticing that cosh(Hd) = cosh(HD), where we take expression (1.99) for d, not
(1.101). This amounts to showing that

1

|~p|2
(√
|~p|2 + 1

√
|~p|2 + e2Ht − eHt

)
=

1

2

(
X +

1

X

)
(1.103)

with

X = eHd =

√
|~p|2 + e2Ht + eHt√
|~p|2 + 1 + 1

. (1.104)

In the remainder of the thesis we will only use D.
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Chapter 2

Relative Locality

2.1 The Relative Locality Framework

Let us first introduce here the general concept of the relativity of locality. It
expresses the idea that an interaction between particles need not necessarily be
localized at a single point in spacetime, at least not for all observers. Instead, a
set of interacting particles may appear to some observers as separated in space-
time. The principle of relative locality, introduced in [22], may be stated a little
bit more specifically as follows: Interactions between particles do not appear lo-
calized to all observers, but when an observer is local to an interaction (that is,
one of the particles interacts in the spacetime origin of the observer) the inter-
action will appear localized in the observer’s spacetime origin (i.e., all particles
in the interaction will interact in the observer’s spacetime origin). This concept
is closely related to the idea of curved momentum spaces, as formalized neatly
in the Relative Locality framework1 (RLF) introduced in [22].

Instead of starting with spacetime and defining momentum space as the (co)tangent
space to the given spacetime manifold, the starting point in the RLF is the spec-
ification of the momentum space geometry. In N + 1 (spacetime) dimensions one

1The RLF is usually referred to simply as ‘Relative Locality’, but in order to distinguish
between the more general concept of the relativity of locality and the specific framework in-
troduced in [22] we will refer to the latter as the RLF.
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must specify an N+1 dimensional Lorentzian momentum space manifold. Space-
time, which will always be flat in the RLF, is defined as the cotangent space to
this momentum space manifold. The dynamics of a single particle (given an in-
dex I for later convenience) in a given curved momentum space is then described
in the RLF by the following action,

Sfree
I =

∫
dλ
(
−xµI ṗ

I
µ +NI

(
D(pI)2 −m2

I

))
. (2.1)

The index I is not summed over unless we explicitly write a summation sign.
Here D(pI) is the geodesic distance in momentum space from pI to the origin2,
mI is the mass of the particle, and NI is a Lagrange multiplier that imposes the
mass-shell condition

D(p)2 = m2. (2.2)

For a system of multiple free particles one adds their respective free actions, and
in case of an interaction, say between particles with momenta p1, . . . , pn, one
adds the (boundary) term

Sint = zµKµ(p1(λ0), . . . , pn(λ0)) (2.3)

where λ0 is the value of the curve parameter at which the interaction will occur,
Kµ are the components of a so-called conservation law, which has to be specified
as well, and zµ is a Lagrange multiplier imposing the actual conservation law
Kµ = 0. Later we will see that the value of zµ also has a physical interpretation,
in contrast to NI . If a momentum composition law ⊕ is given, a standard form
for the conservation law is

K (p1, . . . , pn) = (p1 ⊕ · · · ⊕ pm)− (pm+1 ⊕ · · · ⊕ pn) , (2.4)

2Some care is required when defining the point 0 in momentum space, since in a general
curved manifold there is no such preferred point. Defining 0 by requiring it to have coordinate
expression 0 is highly ambiguous because of the many possible coordinate charts. A better
way of defining 0 is possible in case the coordinate functions on the momentum manifold are
elements in a Hopf algebra. The co-unit ε of this Hopf algebra then defines the coordinates of
the origin via ε(Pµ) = Pµ(0). This is coordinate independent, since a change of coordinates
now corresponds to a basis change of the Hopf algebra. This will become more clear in section
??.
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in terms of some momentum composition rule ⊕, given that particles 1 to m are
incoming, and the other ones outgoing. With this form for the ‘conservation law’
Kµ, the actual conservation law Kµ = 0 clearly reduces to the Special Relativistic
conservation law when ⊕ = +. It is important to remark that, concerning the
interacting particles, the integral in the free action (2.1) for an incoming particle
must run from −∞ to λ0, and for outgoing particles it must run from λ0 to ∞.
This yields the right boundary terms in the equations of motion and also reflects
the fact that the particles come into existence or stop existing at the vertex3.
The total action for a system of multiple particles with an interaction can then
can be written as

S =
∑
I

Sfree
I + Sint

=
∑
I

±
∫ ±∞
λ0

(
−xµI ṗ

I
µ +NI

(
D(pI)2 −m2

I

))
dλ+ zµKµ(p1(λ0), . . . , pn(λ0)),

(2.5)

where the upper sign is for outgoing particles and the lower sign for incoming
particles. The variation of the free action with respect to xµI yields

ṗIµ = 0, (2.6)

implying that all momenta remain constant and reflecting the fact that, although
momentum space might be curved, spacetime is just flat Minkowski space. The
variation with respect to the momenta pIµ yields

ẋµI = −NI
∂C

∂pIµ
, where C(pI) ≡ D(pI)2 −m2

I . (2.7)

Since NI behaves identically as a multiplicative factor in each component of ẋµI ,
it does not affect the worldlines of particles and its value constitutes nothing
more than a convention for the normalization of the momenta.

3If an already existing particle interacts and still exists after the interaction, say in case of
an electron emitting a photon, then in this framework the particle (the electron in the example)
after the interaction is formally considered to be a different particle than before the interaction,
even though it is in fact the same.
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In case of an interaction, it is convenient to write the interaction term as an
integral over a δ-function δ(λ − λ0), while doing the same for the nonvanishing
boundary term that results from the integration by parts of the kinetic term.
Then one finds that the variation4 of the total action with respect to pIµ leads to

0 = ẋµI +N
∂C

∂pIµ
+

(
zν
∂Kν

∂pIµ
± xµI

)
δ(λ− λ0), (2.8)

where the upper sign again corresponds to outgoing particles, and the lower sign
corresponds to incoming particles. Hence for λ 6= λ0 the δ-function does not
contribute and the equations for xµ and pµ are identical to the ones given above
for noninteracting particles. Then, by continuity, these equations must still hold
at λ = λ0, which means that also the factor in front of the δ-function must
vanish,

xµI (λ0) = ∓zν ∂Kν

∂pIµ

∣∣∣∣
λ=λ0

. (2.9)

Thus we see that the value of the Lagrange multiplier zµ is related to the space-
time point where the interaction takes place for each involved particle, i.e., where
the endpoint of the particles’ worldlines are located. This equation, which will be
called the interaction equation shows that the space-time point where a particle
interacts will in general be different for each particle in the interaction; the
particles do not interact at the same single space-time point. If K is symmetric
under exchange of all momenta, however, we recover locality, for then the right
hand side of the equation is the same for each particle. In particular, if we use
the conservation law of special relativity,

K (p1, . . . , pn) = p1 + p2 + · · ·+ pm − pm+1 − · · · − pn, (2.10)

we obtain xµI (λ0) = zµ for all particles, so that zµ represents objectively the exact
point in space-time where the particles interact. In general, locality is recovered

4We fix the variations of the all variables to 0 at ±∞, as usual, but it is important that we
do not fix them to 0 at the (boundary) point λ = λ0.
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also when |zµ| is small enough5 (for each µ). In that case the interaction point for
each particle will be small, i.e., close to zero, and hence all particles will interact
approximately in the origin of the observer’s coordinate system. We will see in the
next section that, given some mild assumptions about translational invariance,
there always exists an observer for which zµ = 0 for a given interaction, so that
this observer is local to the interaction: locality thus has become dependent on
the observer.

2.2 Translational Invariance

As we have seen, the interaction coordinate zµ is closely related to the point(s) in
spacetime where the interaction happens. One might even go so far as claiming
that the zµ have more resemblence to ordinary spacetime coordinates than the
xµI , as zµ is an objective quantity corresponding to the interaction in the sense
that it does not depend on the particle, whereas the xµ coordinate where each
particle interacts is in general different for each particle. At the very least we
should accept that we now have two kinds of space-time points, xµI and zµ, and
thus it becomes an ambiguous matter how to define a spacetime translation.

The first option, which is the traditional one, would be to define xµ → x̃µ =
xµ + aµ, pµ → p̃µ = pµ, where aµ is the translation parameter. It turns out,
however, that the theory cannot be invariant under these kinds of translations
unless the conservation law is the one from Special Relativity. For suppose zµ

transforms as zµ → z̃µ under such a translation, and let us impose invariance
under these transformations. Because momenta, and hence also Kµ and its
derivatives, are invariant under translations we find

xµI + aµ = z̃νM (I)µ
ν ⇒ xµI = z̃νM (I)µ

ν − aµ
!

= zνM (I)µ
ν (2.11)

where we have written M (I)µ
ν = ±∂Kν

∂pIµ
(pI(λ0)), with the upper (lower) sign

5‘Small’ should be understood in the appropriate sense here, and in particular depends on
the actual form of Kµ, but we will assume that the conservation law K has the dimension
of momentum, like the one of spacial relativity, so that zµ will have the dimension of length,
and in this case if zµ is sufficiently small compared to the distance resolution of the measuring
apparatus, locality of the interaction is recovered.
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corresponding to outgoing (incoming) particles in the interaction, and we have
suppressed the value of the curve parameter. Assuming that the matrix M I is
invertible, it follows that we must have

z̃µ = zµ + ((M (I))−1)µνa
ν . (2.12)

But for each particle I participating in the interaction this leads to a different
transformation law (since each M (I) is in general different), whereas there is only
one zµ corresponding to the interaction. Hence the transformation of zµ cannot
be consistently chosen such that there is invariance under these translations.

There arises, however, a second option. Namely, it might be more appropriate
to define a translation by zµ → z̃µ = zµ + aµ, pµ → p̃µ = pµ. Invariance of the
interaction equation (2.9) then requires that

x̃µI = ∓(zν + aν)M (I)µ
ν = xµI ∓ a

νM (I)µ
ν , (2.13)

so that xµI (λ0) must transform as

x̃µI (λ0) = xµI (λ0)∓ aν ∂Kν

∂pIµ
. (2.14)

This is achieved easily by defining (now for each value of the curve parameter)

x̃µI = xµI ∓ a
ν ∂Kν

∂pIµ
, (2.15)

where the upper (lower) sign, again, corresponds to outgoing (incoming) parti-
cles. This alternative translation was first introduced in [26], where it was also
shown that the action is invariant under these translations (up to an irrelevant
boundary term).

Compatibility with Multiple Interactions

The definition of translations as introduced above is a good start, but when
particles are allowed to undergo multiple interactions in their lifetimes, these
translations do not suffice in general to ensure translational invariance, at least
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Figure 2.1: Example interaction diagram. Note that the arrows are not spinor
arrows; they are only there to make the time direction clearer.

not when implemented in the naive way. In this section we show why this is
the case and how to modify the implementation of the translations for the case
of the standard conservation law (2.4) induced by ⊕ such that they are a RLF
symmetry, at least for a certain class of multi-vertex diagrams. We reproduce
the results of [26], where this implementation was proposed.

So first of all, let us see why the translations as just derived are not sufficient
when multiple interactions are taken into account. Consider the situation as
illustrated in the diagram in fig. 2.1, where time flows to the right. It is the q
particle that creates the issue here, as it interacts twice. At the first vertex the
momentum conservation law is K 1 = k − p ⊕ q = 0, and at the second vertex
the conservation law is K 2 = q− r⊕ s = 0. The xµ coordinates of the q particle
transform according to the first vertex as

x̃µ = xµ − aν ∂K
1
ν

∂qµ
= xµ + aν

∂(p⊕ q)ν
∂qµ

, (2.16)

whereas according to the second vertex they transform as

x̃µ = xµ + aν
∂K 2

ν

∂qµ
= xµ + aν

∂qν
∂qµ

= xµ + aµ. (2.17)
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There two expressions are in general not equal and hence the translations are not
well-defined when a particle, like the q particle, undergoes multiple interactions.
However, as was shown in [26], this can be fixed in a lot of situations. In the
case at hand we would solve the problem if we could ensure that

∂K 2
ν

∂qµ
=
∂(p⊕ q)ν
∂qµ

. (2.18)

In order to ensure this, the conservation law K 2 obviously needs to be modified.
But the important insight is that we can change K 2 without changing the actual
conservation law K 2 = 0. Instead of K 2 = q − r ⊕ s we may use K̃ 2 =
p ⊕ q − p ⊕ (r ⊕ s), under the assumption that ⊕ is a group multiplication, for
in that case K̃ 2 = 0 is equivalent to K 2 = 0. And with this modified (yet
equivalent) conservation law, we indeed have

∂K̃ 2
ν

∂qµ
=
∂(p⊕ q)ν
∂qµ

, (2.19)

so that with this form of the conservation law at vertex 2 all translations are
well-defined in the given scenario. What is essential is that we have modified the
conservation law at vertex 2 to be formulated in terms of the total momentum
as computed with ⊕ in the ‘correct’ order. And we have also done this for ver-
tex 1, but there nothing changed since the vertex already constituted the total
momentum by itself.
This leads to the following generalization. When given a certain ‘diagram’ that
shows the interactions between different particles in time, use in each vertex the
conservation law in terms of the total momentum in the diagram. It is not dif-
ficult to see that this procedure yields well-defined translations for all ordered
diagrams, which we define as diagrams that can be drawn without crossing lines
(while imagining all lines extended to ±∞). In these diagrams there is an over-
all order of particles, namely the order as drawn from top to bottom in the
diagram. And the order of particles in each vertex respects this overall order.
By convention this will be the ‘correct’ order to add the momenta of the parti-
cles, as already alluded to before. (Note that the order is important, as ⊕ might
be noncommutative.) That means that in these kinds of diagrams all particles
have a well-defined transformation behavior under translations and the theory is
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Figure 2.2: Example interaction diagram with crossing lines.

translation invariant. However, for diagrams that do have crossing lines one can-
not guarantee that this method works, because the overall order of the particles
cannot be consistent with the order in each individual vertex. A related feature
of diagrams with crossing lines is that there is no global momentum conservation.
An example of this is provided by the diagram in figure 2.2. At the first vertex,
the correct order would be q ⊕ r, while at the second vertex the correct order
would be r⊕ q. It is easily checked that this prevents us from defining the action
of translations using the method introduced above. Also, if⊕ is noncommutative,
global momentum conservation is lost, because p = q ⊕ r 6= r ⊕ q = s.

2.3 De Sitter Momentum Space

2.3.1 Particle Worldlines

As an explicit example we analyze the case of a 1+1 dimensional de Sitter mo-
mentum space, or rather that part of dS space which is describe by comoving
coordinates. The line element in comoving coordinates (p0, p1), which we will
identify with physical momenta, reads ds2 = (dp0)2 − e2p0/κ(dp1)2, where the dS
radius κ is usually identified with the Planck mass. We will define the origin of
this space as the point with coordinates (0, 0). As derived in the previous chapter
the geodesic distance to the origin is then given by

D(p, 0) = κ arccosh

(
cosh

p0

κ
− e

p0
κ

(p1)2

2κ2

)
. (2.20)
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From this and the equations of motion of relative locality we find rather compli-
cated expressions for both ẋ0 and ẋ1, which we omit here, but their quotient is
given by

∂x1

∂x0
=
ẋ1

ẋ0
=

2κp1

κ2 (e−2p0/κ − 1) + (p1)2
. (2.21)

Hence the worldlines in this theory are given by

x1(x0) = x̄1 +
2κp1x

0

κ2 (e−2p0/κ − 1) + (p1)2
(2.22)

with x̄1 = x1(x0 = 0). Interestingly, these relations are exactly the same as the
ones we will obtain in the κ-Poincaré model in part 2. This can be viewed as
hint that a momentum space with de Sitter geometry is somehow associated to
κ-Poincaré symmetries.

2.3.2 Modified Dispersion Relation

The dispersion relation is given by the requirement that the mass of a particle is
equal to its geodesic distance to the origin in momentum space. This then yields
the dispersion relation

m = κ arccosh

(
cosh

p0

κ
− e

p0
κ

(p1)2

2κ2

)
. (2.23)

Notice that the mass coincides with the energy of the particle at rest (p1 = 0).
The dispersion relation also shows that for a given value of p0, not all values of
p1 are allowed, because m should be real and nonnegative. By the nature of the
hyperbolic cosine, this is the case if and only if inequality

|p1| ≤ κ
(
1− e−p0/κ

)
, (2.24)

is satisfied, with equality when the particle is massless, m = 0. Note that this
implies in particular that we always have p1 < κ; the spatial momentum is
bounded from above by the Planck mass.
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2.3.3 Modified Momentum Conservation Law

The momentum conservation law that is often used for the a dS momentum
space is the one associated to the κ-Poincaré Hopf algebra. In chapter 3 we will
derive how a Hopf algebra can provide a composition law, and in chapter 5 we
will see how this works in detail for the κ-Poincaré case. Here we simply state
the resulting composition law,

(p⊕ q)0 = p0 + q0, (p⊕ q)1 = p1 + e−p0/κq1, (2.25)

The conservation law can then be defined by eq. 2.4. The composition has the
convenient property that it respect positivity of energy and it respects the in-
equality 2.24. For if p and q are ‘allowed’ momenta, i.e., p0 and q0 are nonnegative
and they both satisfy (2.24), then (p⊕ q)0 is clearly nonnegative as well, and

|(p⊕ q)1| ≤ κ
(
1− e−p0/κ

)
+ e−p0/κκ

(
1− e−q0/κ

)
= κ

(
1− e−(p0+q0)/κ

)
(2.26)

= κ
(
1− e−(p⊕q)0/κ

)
, (2.27)

and hence also p ⊕ q is an allowed momentum. In particular, the spatial com-
ponent of a composition of momenta is again smaller than the deformation scale
κ.
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Chapter 3

Hopf Algebras and Quantum
Groups

Hopf algebras are algebras with some extra structure. This extra structure is
relevant in physics applications as it allows one (provided the Hopf algebra is
of a certain kind) to define a multi-particle theory including energy-momentum
dispersion relation and momentum composition law. The class of Hopf algebra’s
that we will be interested in specifically is the class of so-called h-adic Hopf
algebras. Deformations of ‘classical’ Lie algebras are generally of this type. Be-
fore we start using Hopf algebras to specify theories of physics it is important
to understand the difference between these h-adic Hopf algebras and ordinary
Hopf algebras, because only the former allow us to define a multi-particle theory
in the desired way. Hopf algebras are also referred to as quantum groups by
some authors, but others use the term quantum group only for specific kinds of
Hopf algebras. To avoid confusion we will only be using the word Hopf algebra.
Standard textbooks about the subject are [29, 30, 31, 32].

3.1 Basics

To get a quick idea, a Hopf algebra is an associative unital algebra that is at
the same time a coalgebra, such that some compatibility conditions are satisfied
between the algebra and coalgebra sector. We will introduce these notions more
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carefully below.

3.1.1 Algebras and Coalgebras

The usual definition of an algebra is as follows.

Definition 4. An algebra (over a field K), is a tuple (A,m), where A is a vector
space (over K) and m : V × V → V is a bilinear map, the multiplication. We
usually write m(a, b) = a·b = ab for all a, b ∈ A and refer to the algebra simply as
A, omitting the map m. A is called associative if a(bc) = (ab)c for all a, b, c ∈ A,
and A is called unital if there is exists an element 1 ∈ A, called the unit, such
that a · 1 = 1 · a for all a ∈ A.

We will be interested mainly in unital associative algebras, the definition of which
can be cast in a different form which will lead us naturally to the definition of
coalgebras.

Definition 5. A unital associative algebra over the field K is a triple (A, µ, η),
where A is a vector space over K, µ : A⊗ A → A is a linear map, the multipli-
cation, and η : K→ A is a linear map such that

µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ), µ ◦ (η ⊗ id) = µ ◦ (id⊗ η) = id, (3.1)

where id is the identity on A and in the second set of equalities the identification
K⊗ A = A⊗K = A is made.

This says precisely that the following two diagrams are commutative.

A A⊗ A

A⊗ A A⊗ A⊗ A

µ

µ

µ⊗id

id⊗µ

A A⊗ A

A⊗ A A

µ

µ

η⊗id

id⊗η
id
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Proposition 6. The two given definitions of a unital associative algebra are
equivalent.

Proof. Let (A,m, 1) be a unital associative algebra over K as in def. 4. Since m :
A×A→ A is bilinear, the universal property of the tensor product ensures that
there exists a unique linear map µ : A⊗A→ A such that µ(a⊗b) = m(a, b) ≡ ab
for all a, b ∈ A. Since A is associative,

µ(µ(a⊗ b)⊗ c) = µ(ab⊗ c) = (ab)c = a(bc) = µ(a⊗ bc) = µ(a⊗ µ(b⊗ c)),
(3.2)

which, by linearity, is enough to show that µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ). We now
define η : K→ A as η(λ) = λ ≡ λ · 1. Clearly η is linear, and

µ(η(λ)⊗ a) = λ · a = a · λ = µ(a⊗ η(λ)), (3.3)

which, again by linearity of the involved maps, proves the first equality of µ ◦
(η ⊗ id) = µ ◦ (id ⊗ η) = id. The second equality is immediate by noting that
λ⊗ a = λa under the canonical identification K⊗ A = A. Thus we have shown
that (A, µ, η) is a unital associative algebra in the sense def. 5. Now let us go in
the opposite direction. Let (A, µ, η) be a unital associative algebra in the sense
of def. 5. Define m(a, b) = µ(a ⊗ b) ≡ ab and 1 = η(1). Then associativity
follows the first equality in def. 5, and the fact that 1 is the unit in A follows
from the last two equalities in def. 5. Hence (A,m, 1) is an associative algebra
in the sense of def. 4. Therefore the definitions are equivalent.

Dual to this alternative (but equivalent) definition of a unital associative algebra
is the definition of a coalgebra, which is obtained by ‘reversing the arrows’.

Definition 7. A coalgebra over a field K is a triple (C,∆, ε), where C is a vector
space over K, ∆ : C → C⊗C is a linear map, called the coproduct, and ε : A→ K
is linear map, called the co-unit, such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id, (3.4)

again using the canonical identifications K ⊗ A = A ⊗ K = A in the last set of
equalities. The first equality expresses so-called coassociativity. A coalgebra is
called cocommutative if ∆ = τ ◦ ∆, where τ is the unique linear map given by
τ(a⊗ b) = b⊗ a.
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This says that the following two ‘reversed’ diagrams are commutative.

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗id

C C ⊗ C

C ⊗ C C

∆

∆
id

id⊗ε

ε⊗id

A widely used and very useful notation for the coproduct is the Sweedler notation.
Since ∆c ∈ C ⊗ C, we have ∆c =

∑
i c
i
(1) ⊗ ci(2) for certain ci(1), c

i
(2) ∈ C. In

Sweedler notation one writes this simply as ∆c = c(1) ⊗ c(2); the indices and the
summation sign are omitted. Just like the Einstein summation convention, this
can often save one a significant amount of ink.

3.1.2 Bialgebras and Hopf Algebras

We now turn to the case that a vector space is simultaneously an algebra and a
coalgebra. Then there is a natural compatibility condition that may or may not
be satisfied.

Definition 8. A bialgebra is a tuple (A, µ, η,∆, ε) such that (A, µ, η) is an al-
gebra, (A,∆, ε) is a coalgebra, and such that the two structures are compatible
in the sense that ∆ and ε are algebra morphisms (where A⊗ A is understood to
have its canonical algebra structure).

We remark without proof or explicit definition of the following terms that said
compatibility condition is equivalent to µ and η being coalgebra morphisms,
justifying the use of the word ‘natural’ above. A Hopf algebra is now defined as
follows.

Definition 9. A Hopf algebra is a tuple (H,µ, η,∆, ε, S) such that (H,µ, η,∆, ε)
is a bialgebra and S : H → H is a linear map, called the antipode, which satisfies

µ ◦ (id⊗ S) ◦∆ = µ ◦ (S ⊗ id) ◦∆ = η ◦ ε. (3.5)



3.1. BASICS 47

Let us have a look at some examples.

Example 10. (Functions on a finite group.)
Let G be a finite group, and define F (G) = {φ : G → C}. This function space
becomes an algebra under the standard pointwise operations,

(φ+ ψ)(g) = φ(g) + ψ(g), (φψ)(g) = φ(g)ψ(g). (3.6)

In order to make F (G) into a coalgebra, we define the maps

∆ : F (G)→ F (G)⊗F (G), ε : F (G)→ C, (3.7)

(∆φ)(g, h) = φ(gh), ε(φ) = φ(1), (3.8)

where we have identified F (G)⊗F (G) = F (G⊗G) via (φ⊗ψ)(g, h) = φ(g)ψ(h).
(Note that this identification would not have been possible, in general, if G were
infinite.) This makes F (G) not only into a coalgebra, but also a bialgebra. The
antipode S : F (G) → F (G) given by (Sφ)(g) = φ(g−1) then makes F (G) into
a Hopf algebra.

Proof. Using the Sweedler notation we have (∆⊗ id)∆φ(g, h, k) = (∆⊗ id)(φ(1)⊗
φ(2))(g, h, k) = ∆φ(1)(g, h)φ(2)(k) = φ(1)(gh)φ(2)(k) = ∆φ((gh)k) = ∆φ(g(hk)) =
. . . = (id ⊗ ∆)∆φ(g, h, k), so that coassociativity follows directly from associa-
tivity in the group. The fact that F (G) is a coalgebra then follows by noticing
that ((ε ⊗ id)∆φ)(g) = φ(g) = ((id ⊗ ε)∆φ)(g). Next it follows easily from the
fact that multiplication is pointwise that ∆ and ε are algebra morphisms, so that
F (G) is a bialgebra. The antipode axiom follows just as easily.

Example 11. (The universal enveloping algebra of a Lie algebra.)
Consider the algebra generated by 1, T 1, . . . , T n with relations[

T i, T j
]

= f ijkT k, f ijk ∈ R, (3.9)

where the brackets denote the commutator w.r.t. the algebra product. This is the
universal enveloping algebra U(g) of the Lie algebra g with structure constants
f ijk in some basis. (The construction is independent of the chosen basis, though.)
Then U(g) has a canonical Hopf algebra structure. ∆, ε and S are defined on
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generators by

∆(1) = 1⊗ 1, ∆(T i) = 1⊗ T i + T i ⊗ 1,

ε(1) = 1, ε(T i) = 0, (3.10)

S(1) = 1, S(T i) = −T i,

and ∆ and ε are extended (uniquely) to algebra homomorphisms, whereas S is
extended (uniquely) to an algebra antimorphism.

We omit the proof that example 11 indeed furnishes a Hopf algebra. The fact
that S is extended to an algebra antimorphism in this example is related to the
following result.

Proposition 12. The antipode of any Hopf algebra is an algebra antimorphism,
i.e., S(hg) = S(g)S(h) for all h, g ∈ H.

Proof. Note first that the Sweedler expression of the coassociativity axiom reads
h(11) ⊗ h(12) ⊗ h(2) = h(1) ⊗ h(21) ⊗ h(22). So also for (well-defined) functions on
H ⊗ H ⊗ H, (id ⊗ ε ⊗ ∆) for instance , we may interchange arguments in this
way: we may replace h(11)ε(h(12))∆(h(2)) by h(1)ε(h(21))∆(h(22)). We will employ
several of those replacements in the following sequence of equalities.We will also
employ the Sweedler expressions for all the other Hopf algebra axioms (which
the reader can easily derive).

S(hg) = S(h(1)ε(h(2))g) = S(h(1)g)ε(h(2)) = S(h(1)g)h(21)S(h(22))

= S(h(1)g)h(21)S(h(22)) = S(h(1)g(1)ε(g(2)))h(21)S(h(22))

= S(h(1)g(1))h(21)ε(g(2))S(h(22)) = S(h(1)g(1))h(21)g(21)S(g(22))S(h(22))

= S(h(11)g(1))h(12)g(21)S(g(22))S(h(2)) = S(h(11)g(11))h(12)g(12)S(g(2))S(h(2))

= S((hg)(11))(hg)(12)S(g(2))S(h(2)) = ε((hg)(1))S(g(2))S(h(2))

= ε(h(1)g(1))S(g(2))S(h(2)) = ε(h(1))ε(g(1))S(g(2))S(h(2))

= S(ε(g(1))g(2))S(ε(h(1))h(2)) = S(g)S(h). (3.11)
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3.2 h-adic (Hopf) Algebras

The Hopf algebras that we will be concerned with in this thesis are so-called
h-adic Hopf algebras. Strictly speaking an h-adic Hopf algebra is not a Hopf
algebra in the usual sense of the word, which is important to realize. Nevertheless
a lot of results for ordinary Hopf algebras carry over to the h-adic case. In this
section we introduce this kind of Hopf algebra and discuss some basic results that
are necessary in order to do physics with them. An important aspect of h-adic
Hopf algebras is that they allow for a generalization of Lie algebras, where the
commutator between generators need not be a linear combination of generators
but is allowed to be a nonlinear expression in the generators. More precisely, it
is allowed to be a power series in some indeterminate variable h (which, in part
II, will be identified with the Planck scale) with coefficients in the vector space
of the corresponding ‘classical’ Lie algebra. For this reason we begin this section
by introducing the ring of power series.

3.2.1 (Hopf) Algebras over C[[h]]

For completeness, we begin by recalling the general definition of a ring, which is
a slightly weaker notion than a field like R or C.

Definition 13. A ring is a set R together with two operations, + : R × R→ R
and · : R × R → R, called addition and multiplication, respectively, such that
R is a group under addition and a monoid 1 under multiplication, and such that
multiplication is bilinear.

The following ring is an essential ingredient for h-adic Hopf algebras.

Definition 14. The ring of complex formal power series is defined as

C[[h]] =

{
∞∑
n=0

cnh
n : cn ∈ C

}
(3.12)

1The definition of a monoid is that same as that of a group, but without the requirement
for inverse elements.
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as a set, where h is an indeterminate parameter, only there for book-keeping
purposes. The sum of two formal power series is given by

∞∑
n=0

cnh
n +

∞∑
n=0

dnh
n =

∞∑
n=0

(cn + dn)hn (3.13)

and the product is given by(
∞∑
n=0

cnh
n

)(
∞∑
n=0

dnh
n

)
=
∞∑
n=0

(
n∑
k=0

ckdn−k

)
hn, (3.14)

i.e., the operations are precisely as expected for power series.

It is an easy exercise to show that C[[h]] so defined is a indeed ring. We note again
that the indeterminate parameter h serves no other purpose than book-keeping
at this stage (although later we will find a way to give it a definite value and we
will identify it with the Planck scale). Indeed, one might also view C[[h]] in a
different way, without the h, namely as consisting of all functions N → C. The
convenience of the power series ‘representation’ is that the product is precisely
what one would expect for power series. The ring R[[h]] of real power series is
defined analogously, but we will here focus on the complex case, as is standard
in the literature on h-adic Hopf algebras.
Although the concept of a vector space (and hence of an algebra) relies on an un-
derlying field, which usually is R or C in phyics, it can be generalized to the case
where, instead of a field, one may use a ring R, like C[[h]]. This generalization
is called an R-module.

Definition 15. An R-module, where R is a ring, is defined by the same axioms
as a vector space, but with the underlying field replaced by a ring R.

Although a lot of results for vector spaces generalize to R-modules, it is not the
case for all result. For example, an important difference between vector spaces
and R-modules is that the former always have a (Hamel) basis, whereas the latter
need not have one. For us, the prime example of an R-module is the following
one.
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Example 16. Let V be a complex vector space. V [[h]] is the C[[h]]-module con-
sisting of all power series in h with values in V ,

V [[h]] =

{
∞∑
n=0

vnh
n : vn ∈ V

}
, (3.15)

and with addition and scalar multiplication given by

∞∑
n=0

vnh
n +

∞∑
n=0

wnh
n =

∞∑
n=0

(vn + wn)hn (3.16)(
∞∑
n=0

cnh
n

)(
∞∑
n=0

vnh
n

)
=
∞∑
n=0

(
n∑
k=0

ckvn−k

)
hn, (3.17)

where vn, wn ∈ V and cn ∈ C. Modules of this form are called topologically free
modules.

Example 17. Another important example is the C[[h]]-module V ⊗CC[[h]], which
we will also denote simply by V ⊗C[[h]]. The addition of vectors in V ⊗C[[h]] is
given by the usual addition in the complex tensor product and scalar multiplication
happens in the second factor of the tensor product, i.e., for f, g ∈ C[[h]] and v ∈ V
we have

f · (v ⊗ g) = v ⊗ (fg), (3.18)

where fg is the product in C[[h]], and this is extended linearly.

These two examples turn out to coincide in a lot of the cases. Before we prove
this, let us remark that further notions like R-module homomorphisms and con-
structions like tensor products over R can be obtained from the vector space ones
by obvious generalizations replacing the fields by rings.

Proposition 18. If V is finite dimensional then V ⊗C C[[h]] ∼= V [[h]] as C[[h]]-
modules.

Proof. Define the map φ : V ⊗ C[[h]]→ V [[h]] on pure tensors as

φ(v ⊗
∑

cnh
n) =

∑
(cnv)hn. (3.19)
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This extends to a well-defined C-linear map on the full tensor product space,
by the universal property of the tensor product, and it is easy to see that the
resulting map is also C[[h]]-linear2. To show that the map is bijective, we fix
a basis (e1, . . . , en) of V . For injectivity it suffices to show, by C[[h]]-linearity,
that φ(x) = 0 ⊗ 0 only if x = 0 ⊗ 0. So, noting that we can write a general
x ∈ V ⊗C[[h]] as x =

∑
i (ei ⊗

∑
n cinh

n), suppose that φ(x) = 0⊗ 0. (Note also
that the i-sum here is necessarily a finite one.) Then

φ (x) =
∑
i

φ

(
ei ⊗

∑
n

cinh
n

)
=
∑
i

∑
n

(cinei)h
n =

∑
n

(∑
i

(cinei)

)
hn = 0

(3.20)

and hence cinei = 0 for all n. Since {ei} is a basis of V , this implies that cin = 0
for all i, n and that means that

x =
∑
i

(
ei ⊗

∑
n

cinh
n

)
=
∑
i

(ei ⊗ 0) = 0. (3.21)

Hence φ is injective. Surjectivity is straightforward. For any element y =∑
n vnh

n ∈ V [[h]], with vn ∈ V for all n, we can express vn = cinei in terms
of the basis, and then setting x =

∑
i (ei ⊗

∑
n cinh

n) yields φ(x) = y. As for
vector spaces, a bijective linear map between R-modules is automatically an
R-module isomorphism, so this completes the proof.

Remark 19. If V is infinite-dimensional the above proof shows that the map φ
is not surjective, as for any

∑
n vnh

n in the image of φ the vn will all lie in a
finite dimensional subspace of V .

We now turn to the generalized notion of an algebra, allowing for rings instead
of fields. The definition is the obvious one and we will just refer to them as
R-algebras. And similarly, the definition of a Hopf algebra can be generalized
to allow for rings instead of field, leading to the notion of (Hopf) algebras over
C[[h]].

2Strictly speaking the correct terminology here is not the term ‘linear’, which would be
correct if the underlying ring was actually a field, but instead it is more common to say that
φ is a C[[h]]-module map. We will however also continue to refer to this property simply as
C[[h]]-linearity.
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Definition 20. An h-adic (Hopf) algebra is a (Hopf) algebra over C[[h]]. An
h-adic Hopf algebra which is topologically free as a C[[h]]-module, as in example
16, is called a topologically free Hopf algebra.

Example 21. If A is a complex algebra then A[[h]], with the C[[h]]-module struc-
ture as in example 16, has a natural h-adic algebra structure, where the multipli-
cation is given by the obvious analog of the scalar multiplication law in A[[h]].

3.2.2 The h-adic Topology

Any C[[h]]-module can be endowed with a topology called the h-adic topology.
Although this is quite a technical subject, we will develop several important
properties of the topology here, because it is essential for understanding some
of the operations the can be used on h-adic (Hopf) algebras, like term-by-term
calculations and (nonlinear) basis transformations.

The first construction that we need to discuss is the h-adic completion of a
C[[h]]-module. Let M be a C[[h]]-module. Consider the ideals hnM of M for
each n = 0, 1, 2, . . . and note that we have canonical projections

πn+1 : M/hn+1M →M/hnM =
(
M/hn+1M

)
/hnM (3.22)

for all n ≥ 0. This is a case where the notion of inverse limit is applicable. This
notion extends to much more general situations, but here we only care about
applying it to our situation. We define a coherent sequence as an element of the
Cartesian product x ∈

∏∞
n=0 (M/hnM), written x = (x0, x1, . . . ) which satisfies

πn+1(xn+1) = xn for each n ≥ 1. The subset of the Cartesian product consisting
of coherent sequences is called the inverse limit and is denoted by

M̃ = lim←− (M/hnM) . (3.23)

The inverse limit lim←− (M/hnM) has a natural C[[h]]-module structure: both ad-
dition and scalar multiplication are evaluated pointwise, i.e., if f ∈ C[[h]] and
(xi), (yi) ∈ lim←− (M/hnM) we define

f · (x0, x1, . . . ) + (y0, y1, . . . ) = (fx0 + y0, fx1 + y1, . . . ) (3.24)
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where it must be noted that in the ith component, f is interpreted as f +
hi+1C[[h]] ∈ C[[h]]/hi+1C[[h]]. We call lim←− (M/hnM) the (h-adic) completion of
M . Note that there is a natural C[[h]]-module morphism i : M → lim←− (M/hnM)
given by M 3 x 7→ (x+M,x+ hM, x+ h2M, . . . ). We say that M is an (h-
adically) complete C[[h]]-module if this map is an isomorphism3. It is an intstruc-
tive exercise to check that V [[h]] as in example 16 is complete.

Any C[[h]]-module M can be endowed with the h-adic topology, which is defined
by means of the neighborhood base Ux = {x + hnM : n ∈ N} at each point
x ∈ M . When M is complete, it follows by injectivity of i that

⋂
n h

nM = 0
which implies that the h-adic topology is Hausdorff. In this case it coincides
with the metric topology coming from the metric d(x, y) = 2−k, where k is the
smallest integer such that x − y /∈ hkM , with k = ∞ if no such integer exists,
which then is indeed a metric on M in the sense that it has values in [0,∞), it
is symmetric, satisfies the triangle inequality, and satisfies d(x, y) = 0⇔ x = y.
An essential property of the h-adic topology is given by the following proposition
and its corollary.

Proposition 22. Any C[[h]]-module homomorphism φ : M → N between C[[h]]-
modules M,N is automatically continuous in the h-adic topology, which implies
that f(mn)→ f(m) in N whenever mn → m in M .

Proof. Open neighborhood bases at x ∈ M and φ(x) ∈ N for the topologies
on M and N , respectively, are given by U = {x + hnM : n ∈ N} and V =
{φ(x)+hnN : n ∈ N}. Now for any open neighborhood φ(x)+hnN ∈ V we pick
the open neighborhood x+hnM ∈ U , and then C[[h]]-linearity, together with the
fact that φ(M) ⊂ N , implies that φ(x+ hnM) = φ(x) + hnφ(M) ⊂ φ(x) + hnN .
This shows that φ is continuous at x, which was an arbitrary point.

Corollary 23. A C[[h]]-linear map φ : V [[h]]→ W [[h]], where V,W are complex
vector spaces may be evaluated term by term, i.e., if f =

∑∞
i=0 vih

i ∈ V [[h]] then
φ(f) =

∑∞
i=0 φ(vi)h

i.

3The terminology differs per author. For example, in [30] the term complete is defined to
mean only that the map i is surjective, not necessarily bijective, whereas if the complementary
property, that i is injective, holds, then M is called separated. Hence a lot of results in [30] are
about complete, separated modules.
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Proof. For any partial sum fn =
∑n

i=0 vih
i we have

φ(fn) =
n∑
i=0

φ(vih
i) =

n∑
i=0

φ(vi)h
i, (3.25)

by C[[h]]-linearity. This shows that φ(fn) converges in the h-adic topology to∑∞
i=0 φ(vi)h

i. At the same time, since φ is C[[h]]-linear, it is automatically con-
tinuous in the h-adic topology, by prop. 22, and hence, since fn converges in the
h-adic topology to f , φ(fn) converges to φ(f). But W [[h]] is complete and hence
Hausdorff. Since sequences in Hausdorff spaces can only have one limit, so we
must have φ(f) =

∑∞
i=0 φ(vi)h

i.

3.2.3 Finitely Generated h-adic (Hopf) Algebras

Just like a set of generators with (polynomial) relations can be used to define
an algebra, this kind of data can also be used to define an h-adic algebra, and
the interesting new aspect in the h-adic case is that the relations need not be
polynomial but can contain power series in them. Here we introduce the notion
of the h-adic algebra generated by the set S = {1, T1, . . . Tn} of generators with
relations φi = 0. To this end one first constructs the tensor algebra T (spanCS)
of the complex vector space spanned by n basis vectors which we denote as Ti,
i = 1, . . . n. Next one constructs the algebra of power series T (spanCS) [[h]] in
h with coefficients in the tensor algebra. And finally the desired relations in
this tensor algebra are then enfored by taking the quotient of this space with
respect to the h-adic closure of the ideal C[[h]]〈φi〉 generated (over C[[h]]) by the
relations φ. The result is the desired h-adic algebra A:

A = T (spanCS) [[h]]
/ ˜C[[h]]〈φi〉. (3.26)

By construction, all the relations φi = 0 will indeed be satisfied in A. It
should now also be clear that the relations φi may contain any element in
T (spanCS) [[h]].
Given a C[[h]]-module homomorphism φ : A → B between topologically free
algebras A,B, we have already seen that it is allowed to evaluate φ term by
term on power series. In the case that A is finitely generated, and φ is also an
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algebra homomorphism, we are allowed to do even more. Consider an element
a ∈ A. It can be written in terms of the generators gi as a function of the form
a = f({gj}) =

∑∞
i=0 Pi({gj})hi, where each Pi is a polynomial in the generators.

Now by the preceding comment, we may evaluate φ on a by evaluating it term
by term, i.e., on each polynomial Pi separately. But because φ is an algebra
map and Pi a polynomial, we can bring φ inside the Pi and act on each generator
individually, φ (Pi({gj})) = Pi({φ(gj)}). Combining these two facts, we conclude
that we have

φ (f({gj})) = f ({φ(gj)}) . (3.27)

To put it briefly,

Proposition 24. The homomorphism φ may be evaluated on each generator
individually.

This shows that an algebra morphism is completely specified by its actions on
generators. The same holds for algebra anti-morphisms, like the antipode of an
(h-adic) Hopf algebra. In particular, once a finitely generated h-adic algebra
is specified, to define an h-adic Hopf algebra structure on it one only needs to
define the coproduct, co-unit and antipode on the generators of the algebra. The
following instructive example illustrates these ideas.

Proposition 25. If a is a primitive element in a topologically free Hopf algebra
V [[h]], meaning that ∆a = a⊗1+1⊗a, then eah is a group like element, meaning
that ∆(eah) = eah ⊗ eah.

Proof. First not that eah is a well-defined element in V [[h]] since it can be ex-
pressed as a power series in h with the coefficients being polynomials in the gener-
ators. Using cor. 23, we have ∆

(
eah
)

= e∆(a)h = eah⊗1+1⊗ah. Now note that ah⊗
1 and 1⊗ ah commute, so that the exponential factorizes, ∆

(
eah
)

= eah⊗1e1⊗ah,
and then, writing out the power series it is easy to see that eah⊗1 = eah ⊗ 1 and
e1⊗ah = 1⊗eah, so that we obtain the final result ∆

(
eah
)

=
(
eah ⊗ 1

) (
1⊗ eah

)
=

eah ⊗ eah.
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3.3 Nonlinear Basis Transformations

3.3.1 Lie Algebra Basis Transformations

In the (physics) literature on Hopf algebras one is often interested in a certain
Hopf algebra in a specific ‘basis’. Basis is in quotes, because we are not talking
about a vector space basis, or even a C[[h]]-module basis, but when one talks
about a basis of an h-adic Hopf algebra, one usually means the set of generators
of the algebra and there relations.

We will compare the situation with the theory of Lie algebras, because in a
certain sense our current situation is a generalization of this. Any given Lie
algebra can be expressed in terms of a different vector space basis, and in each
basis the Lie brackets will in general be different. The Lie algebra sl(2,C) for
instance can be defined as the complex vector space with basis J1, J2, J3 and
Lie brackets given by linear extension of [Ji, Jj] = εijkJk, but it can just as well
be defined as the complex vector space with basis K+, K−, K3 and Lie brackets
given by linear extension of [K+, K−] = −2K3, [K±, K3] = ±K∓. That these two
descriptions actually define the same Lie algebra is seen simply by noting that
the two are related by a basis transformation

K± = J1 ± J2, K3 = J3. (3.28)

To make this a bit more formal (which will allow us to generalize these ideas to
the realm of h-adic Hopf algebras), we can say that the two versions define the
same Lie algebra because there exists a Lie algebra isomorphism between the
two Lie algebras, given by

φ(J1) =
1

2
(K+ +K−) , φ(J2) =

1

2
(K+ −K−) , φ(J3) = K3. (3.29)

That this is indeed a Lie algebra isomorphism is readily checked; the map is
invertible and satisfies

[φ(Ji), φ(Jj)] = φ ([Ji, Jj]) (3.30)

for i = 1, 2, 3. In the context of Lie algebras a basis change is, of course, al-
ways a linear transformation. In the context of h-adic (Hopf) algebras, we are
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not restricted to linear transformations anymore. Let us first see an example.
Consider the universal enveloping U (sl(2,C)) and extend it to an h-adic algebra
by looking at U (sl(2,C)) [[h]], the algebra of formal power series with values
in the enveloping algebra. This object has a natural h-adic algebra structure,
as introduced in example 16. We can again describe this algebra in multiple
ways. We can say that it is generated by the Ji or by the K±, K3. The two
descriptions are of course equivalent, and indeed, the isomorphism φ from earlier
extends to an isomorphism between the two h-adic algebras. To see this we first
define φ, as before, on the complex span of the generators Ji (and we interpret
the image of φ as lying in the alternative version of U (sl(2,C)) [[h]]). Then,
being a linear map on this span, φ automatically extends uniquely to a complex
algebra homomorphism on the tensor algebra, and then it automatically extends
uniquely a C[[h]] algebra homomorphism (this is easy to verify) on the space
of power series with values in the tensor algebra. Now we have to check that
φ respects the relations that we impose on those power series when generating
the U (sl(2,C)) [[h]], because then φ will remain well-defined after quotienting
out the relations. But the statement that φ respects these relations is precisely
the statement, which we checked above, that φ is a Lie algebra homomorphism.
Hence φ extends to a well-defined C[[h]]-algebra homomorphism between the two
versions of U (sl(2,C)) [[h]]. To construct the inverse of φ, we simply take the
inverse of the Lie algebra version of φ, and then we extend it in the same way to a
C[[h]]-algebra homomorphism. Let us call the resultant map ψ and see that those
two maps are indeed inverses of each other. By definition, for the generators Ji,
we have ψ(φ(Ji)) = Ji. By the homomorphism property, ψ ◦ φ also acts as the
identity on sums of products of generators. And because, as proven in prop. 22,
ψ ◦ φ is continuous, it also acts as the identity on infinite power series. Hence
ψ ◦ φ = id and the maps are indeed inverses of each other. We have proven that
the two versions of the h-adic enveloping algebras of sl(2,C) are isomorphic, as
expected. Clearly we used no special properties of sl(2,C) in the proof, and no
special facts about the specific isomorphism φ. It is easily seen that the proof
extends to

Proposition 26. If φ : g → h is a Lie algebra isomorphism then φ extends
uniquely to a C[[h]-algebra isomorphism U(g)[[h]]→ U(h)[[h]].
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3.3.2 Flash Forward: The κ-Poincaré Hopf Algebra

At this point it is clear that the theory of Lie algebras is embedded in the theory
of h-adic (Hopf) algebras. We are now ready to see one of the new possibilities
that opens up when we work within the realm of h-adic algebras. We will for the
first time see an example of a so-called nonlinear basis transformation. We will
treat the example of the κ-Poincaré Hopf algebra in 1 + 1 dimensions, denoted4

H = Uh(iso(1, 1)), which, as an h-adic algebra, is generated by P0, P1, N with
relations

[P0, P1] = 0, [N,P0] = P1, [N,P1] = κ sinh(P0/κ), (3.31)

where κ = 1/h. We choose to work with κ here because it is the most common in
the physics literature. We will later identify it with the Planck scale. The third
commutation relation, which would not be allowed in the realm of Lie algebras,
is allowed here because

κ sinh

(
P0

κ

)
= P0 +

P 3
0

6κ2
+

P 5
0

120κ4
+ . . . (3.32)

is a well-defined power series in 1/κ with coefficients in the tensor algebra of
the span of the generators. Note also that when we take κ → ∞, which in the
context of power series in 1/κ means simply that we evaluate all power series only
to zeroth order in 1/κ, the relations reduce to those of the Poincaré algebra. We
will defer the treatment of the coalgebra sector to section 3.5, where we officially
introduce the κ-Poincaré Hopf algebra.
A nonlinear basis transformation can now be defined in terms of a new set of
generators, that can be chosen (a priori) freely from the algebra. In this example
we choose the following set of alternative generators,

P̃0 = P0, P̃1 = P1e
−P0/2κ, Ñ = Ne−P0/2κ, (3.33)

The first important observation is that this correspondence is ‘invertible’ in the
sense that each of the original P0, P1, N can be consistently expressed as a power

4ISO(1,1) is a common notation for the Poincaré group in 1 + 1 dimensions, the isometry
group of 1 + 1 dimensional Minkowski space. iso(1, 1) is its Lie algebra, the Poincaré algebra,
and Uh stands for a deformation of this algebra with deformation parameter h.
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series in 1/κ with values in the tensor algebra of the transformed generators
P̃0, P̃1, Ñ , namely as

P0 = P̃0, P1 = P̃1e
P̃0/2κ, N = ÑeP̃0/2κ. (3.34)

This is the property that allows us to speak of a ‘basis transformation’. We
now want to relate the original algebra H – the one generated by P0, P1, N
with the stated relations – to the algebra generated by P̃0, P̃1, Ñ with suitable
alternative relations, let us call it H ′. In this language, we must formulate the
above redefinition of the generators a bit differently to make sense of it. We
start by defining a map φ : H → H ′ corresponding to the relation between the
generators above,

φ : P0 7→ P̃0, P1 7→ P̃1e
P̃0/2κ, N 7→ ÑeP̃0/2κ. (3.35)

We speak of a nonlinear basis transformation, because φ definitely appears to
be nonlinear in the generators. And although this is a correct observation, we
should realize that actually the map φ is a perfectly linear map when viewed in
the context of C[[h]-modules! The element to which P1 is mapped, P1e

−P0/2κ, is
just some element in H ′, which is a C[[h]]-module and in particular a complex
vector space. The same holds for the elements to which the other generators are
mapped. In fact it is even the case that φ extends to a well-defined linear map
H → H ′ which turns out to be an isomorphism when we adopt for H ′ the rela-
tions below, so that the two algebras, although formulated in terms of different
sets of generators, are the in fact identical. This follows from the general result
in prop. 27 which we will prove soon. So a great advantage of working over the
ring of complex power series is that things which would usually be considered
nonlinear now become in fact linear and therefore relatively easy to deal with.
Now let us demonstrate how to find the form of the algebra in the ‘new basis’,
in practice. The result will be called the bicrossproduct basis of the κ-Poincaré
algebra.
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What we want to know are the commutation relations between the new genera-
tors P̃0, P̃1, Ñ . Two of those are trivially found in the following way

[P̃0, P̃1] = [P0, P1e
−P0/2κ] = [P0, P1]e−P0/2κ + P1[P0, e

−P0/2κ] = 0 + 0 = 0, (3.36)

[Ñ , P̃0] = [Ne−P0/2κ, P0] = [N,P0]e−P0/2κ + 0 = P1e
−P0/2κ = P̃1. (3.37)

The third one requires some more work, but is very instructive.

[Ñ , P̃1] = [Ne−P0/2κ, P1e
−P0/2κ] (3.38)

= N [e−P0/2κ, P1]e−P0/2κ + P1[N, e−P0/2κ]e−P0/2κ + [N,P1]e−P0/κ (3.39)

= P1[N, e−P0/2κ]e−P0/2κ + [N,P1]e−P0/κ (3.40)

where the first of the three commutators vanishes because P0 commutes with P1.
The two remaining commutators will be examined individually. The second one
is simple,

[N,P1]e−P0/κ = κ sinh(P0/κ)e−P0/κ =
κ

2

(
1− e−2P0/κ

)
=
κ

2

(
1− e−2P̃0/κ

)
,

(3.41)

and for the first one we have to work term by term in the power series. Since the
commutator is just a certain linear combination of algebra products, and because
the algebra product is C[[h]]-bilinear, and hence h-adically continuous in each
slot, the commutator is also h-adically continuous in each slot, which justifies
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the term-by-term computation. Hence we get

[N, e−P0/2κ] =

[
N,

∞∑
n=0

1

n!

1

(−2κ)n
P n

0

]
=
∞∑
n=0

1

n!

1

(−2κ)n
[N,P n

0 ] (3.42)

=
∞∑
n=1

1

n!

1

(−2κ)n
(
P n−1

0 [N,P0] + P n−2
0 [N,P0]P0 + · · ·+ [N,P0]P n−1

0

)
(3.43)

=
∞∑
n=1

1

n!

1

(−2κ)n
(
P n−1

0 P1 + P n−2
0 P1P0 + · · ·+ P1P

n−1
0

)
(3.44)

=
∞∑
n=1

1

n!

1

(−2κ)n
nP n−1

0 P1 (since P0 and P1 commute) (3.45)

=
−1

2κ

∞∑
n=1

1

(n− 1)!

1

(−2κ)n−1
P1P

n−1
0 =

−1

2κ

(
∞∑
n=0

1

n!

1

(−2κ)n
P n

0

)
P1

(3.46)

=
−1

2κ

(
∞∑
n=0

1

n!

1

(−2κ)n
P n

0

)
P1 =

−1

2κ
e−P0/2κP1, (3.47)

which leads to the term

P1[N, e−P0/2κ]e−P0/2κ =
−1

2κ
P1e

−P0/2κP1e
−P0/2κ =

−1

2κ
P̃ 2

1 . (3.48)

Hence the relations in the new basis are found to be

[P̃0, P̃1] = 0, [Ñ , P̃0] = P̃1, [Ñ , P̃1] =
κ

2

(
1− e−2P̃0/κ

)
− 1

2κ
P̃ 2

1 . (3.49)

The algebra h-adically generated by P̃0, P̃1 and Ñ with these relations is isomor-
phic to the κ-Poincaré algebra we started with, and the two equivalent algebras
are related by what we call a (nonlinear) basis transformation. The basis arrived
at here is called the bicrossproduct basis and is the one that is most frequently
considered in physics applications. It was derived for the first time in [13]. It
is interesting to note that this is also precisely the ‘algebra’ that is satisfied by
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the spacetime translation generators (i.e. KVFs) (P̃0, P̃1) and the momentum
space boost (Ñ) in the case that spacetime is described with the Minkowski
metric and momentum space has a de Sitter metric, which the interested reader
can check. This immediately suggests that if the κ-Poincaré algebra is to de-
scribe symmetries of some physics model, then it would have something to do
with a de Sitter momentum space manifold. This is indeed the current consensus.

We now prove the general result on basis transformations of h-adic algebras.

Proposition 27. (Nonlinear Basis Transformations)
Let A be the h-adic algebra generated by {g1, g2, . . . , gn} with commutator rela-
tions [gi, gj] = Gij for some Gij, and let a map φ : {g1, g2, . . . , gn} → Ãpre be
given into Ãpre, the algebra h-adically generated by {g̃1, g̃2, . . . , g̃n} with no rela-
tions (yet). Assume that φ, when extended linearly to all of A, is invertible on
generators, in the sense that there exists a C[[h]]-linear map φ−1 : Ãpre → A such
that φ−1 ◦ φ(gi) = gi and φ ◦ φ−1(g̃i) = g̃i for all i. Define commutator relations
on Ãpre schematically as

[g̃i, g̃j] = comm∼(g̃i, g̃j), (3.50)

comm∼ ≡ φ ◦ comm ◦ (φ−1 × φ−1), (3.51)

where comm denotes the commutator in the original algebra A. In other words,
we simply use φ−1 to express the alternative generators in terms of the original gi,
then we compute the commutator using the relations among the gi of the original
algebra, and then we use φ to translate back to the g̃i. Then the algebra Ã
generated by {g̃1, g̃2, . . . , g̃n} with these commutator relations is isomorphic to A.
We say that A and Ã are related by a (possibly nonlinear) basis transformation.
(For technical reasons we also assume that the commutator of any two elements
in Ãpre, not only generators, is given by the expression comm∼.)

Proof. Extend the map φ, given on the basis {g1, g2, . . . , gn}, to a C-linear map
on the span V of the generators. Then φ can be further extended first to a
complex algebra map on the tensor algebra T (V ) of V , and then even to a C[[h]]
algebra map on T (V )[[h]]. To show that this induces an algebra homomorphism
A → Ãpre we then only need to show that φ is compatible with the relations
on A, i.e., [φ(gi), φ(gj)] = φ(Gij), because A is the quotient of T (V )[[h]] by the
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(closure of the) algebra generated by the relations. Schematically this comes
down to the condition that

comm∼ ◦ (φ× φ) = φ ◦ comm, (3.52)

and it follows simply from the definition of comm∼ above that this condition is
satisfied. Hence φ is an algebra morphism A→ Ãpre, which of course induces an
algebra morphism φ : A→ Ã.
We can do this whole construction in the opposite direction as well, which leads to
an algebra morphism φ′ : Ã→ A. It can then be seen that φ and φ′ are mutually
inverse maps (on generators and hence everywhere), proving that Ã ∼= A.

As a remark, note that the inverse φ−1 is usually easily found, as can be seen for
instance in the κ-Poincaré example above.

3.4 Phase Space Representations and Physics

Phase space representations provide a way to connect the mathematical structure
of a given h-adic Hopf algebra to actual physics. Since finitely generated h-adic
Hopf algebras like the κ-Poincaré algebra can be thought of as deformations of Lie
algebras, a representation of a Hopf algebra should be defined in a similar way as
that of a Lie algebra. But it is not enough to define a phase space representation
of a finitely generated h-adic Hopf algebra as a linear map to the smooth functions
on phase space such that the relations among the generators are satisfied (which
would be the closest analog of a Lie algebra representation), because then we
are neglecting the additional structure provided by ∆, ε and S. In particular,
we would like to retain in the representation the fact that these maps may be
evaluated term by term in power series expressions, e.g. ∆(eah) = e∆(a)h. To
ensure this we will need a suitable definition of a phase space representation and
we will provide this definition in this section.

3.4.1 Phase Space Representations

Why not an ordinary algebra representation?

It is important to realize that a ‘standard’ definition of representation of an
algebra (in contrast to Lie algebra) will not work when we want to work on
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phase space. An essential requirement, coming from the Lie algebra analog, is
that the commutation relations between the generators of the algebra need to be
satisfied on phase space not as commutators with respect to Poisson brackets.
For instance, the relation [E,H] ≡ EH − HE = H should be represented on
phase space as {E,H} = H. If we would also require that the representation,
say φ, was a true algebra representation, and hence an algebra homomorphism,
we would have

φ(H) = φ([E,H]) = φ(EH −HE) = φ(E)φ(H)− φ(H)φ(E) (3.53)

= φ(E)φ(H)− φ(E)φ(H) = 0 (3.54)

because φ(E) and φ(H) are functions and hence they necessarily commute. Thus
operators like H, which are equal to a commutator, would automatically vanish
in the representation. In this way we would lose a lot of information. Hence
requiring φ to be an algebra homomorphism is not a good idea. We conclude
that a h-adic algebra representation on phase space must be something different
than a usual algebra representation. But of course we do want to retain as much
structure of the original Hopf algebra as possible in representation.
A way to achieve this is, in most cases, is to first forget about the relations
among the generators and represent the resulting tensor algebra (as opposed to
its quotient with the relations) as we would usually represent an algebra. This
then keeps track of the algebra structure. The relations among the generators
will be incorporated in a different way, namely in the Poisson brackets, so it
is acceptable to forget about them when dealing with algebra multiplication.
When we represent the algebra sector of a Hopf algebra in this way, it turns
out that (modulo some mild technicalities) there is a natural way to define also
the coproduct, co-unit and antipode on phase space. We will now go through
the technical definitions and proofs, and then apply it to the κ-Poincaré Hopf
algebra.
Before we define phase space representation we first need to specify the class of
Hopf algebras to which our definition will be applicable.

Definition 28. A finitely generated h-adic Hopf algebra H is called representable
if the maps ∆, ε and S can be extended to the whole tensor algebra (instead of just
the quotient of the tensor algebra, where the maps are originally defined), i.e.,
(T (V )[[h]], ∆̃, ε̃, S̃) is a Hopf algebra such that H is a Hopf subalgebra thereof.
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Moreover we assume that the coproduct takes values in T (V )[[h]] ⊗ T (V )[[h]] ⊂
(T (V ) ⊗ T (V ))[[h]]. We call this extended Hopf algebra the extension of H and
denote it by H̃.

For the Hopf algebras like the κ-Poincaré Hopf algebra and many other Hopf
algebra deformations of classical Lie algebras these conditions are met.

Definition 29. A phase space representation of a representable Hopf algebra H
is a map T : H → F (M), where M is a phase space (i.e., a smooth Poisson
manifold) and F (M) the space of smooth functions M → C, together with a
complex number h0 ∈ C, such that the relations between the Hopf algebra gen-
erators are realized on phase space through the Poisson bracket and such that if
a ∈ H can be expressed as

a =
∑
i

(∑
j

cj
∏
k

gk

)
hi, (3.55)

where gk are generators of H, then

T (a) =
∑
i

(∑
j

cj
∏
k

T (gk)

)
hi0, (3.56)

i.e. any formal power series in the indeterminate h is mapped to the correspond-
ing actual power series in h0 in F (M). This means in particular that T is a
complex algebra map.

Heuristically this says that T is even C[[h]]-linear and continuous in some sort
of h-adic topology. The definition of course requires that all actual power series
in (3.56) must be convergent everywhere in phase space. Note that the mapping
of the indeterminate h to an actual complex number h0 is needed in order to be
able to do actual calculations in physics. This covers the algebra sector. Next
we need to assign a coproduct to our phase space representations. Let T be a
representation of H. Define the coproduct via

∆(T (a)) = (T ⊗ T )(∆(a)) = T (a(1))⊗ T (a(2)), (3.57)
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where T ⊗ T is the map H ⊗H → F (M)⊗F (M) induced by T via

(T ⊗ T )(a⊗ b) = T (a)⊗ T (b). (3.58)

We now show that this coproduct indeed still satisfies its usual coassociativity
property. We have

(1⊗∆) ◦∆(T (a)) = (1⊗∆)(T (a(1))⊗ T (a(2))) (3.59)

= T (a(1))⊗ T (a(2)(1))⊗ T (a(2)(2)) (3.60)

= (T ⊗ T ⊗ T )(a(1) ⊗ a(2)(1) ⊗ a(2)(2)) (3.61)

= (T ⊗ T ⊗ T )((1⊗∆) ◦∆(a)) (3.62)

= (T ⊗ T ⊗ T )((∆⊗ 1) ◦∆(a)) (3.63)

= . . . = (∆⊗ 1) ◦∆(T (a)). (3.64)

Hence

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆ (3.65)

in the representation. We define the co-unit ε : T (H) → C as ε(T (a)) = ε(a).
Then we have

(ε⊗ id) ◦∆(T (a)) = (ε⊗ id)(T (a(1))⊗ T (a(2))) = ε(a(1))T (a(2)) (3.66)

= T (ε(a(1))a(2)) = T ((ε⊗ id) ◦∆(a)) = T (a) (3.67)

which proves that our phase space representation is a coalgebra. Next we make
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sure that ∆, ε and S are algebra (anti)homomorphisms.

∆(T (a)T (b)) = ∆(T (ab)) = (T ⊗ T )(∆(ab)) = (T ⊗ T )(∆(a)∆(b)) (3.68)

= (T ⊗ T )
((
a(1) ⊗ a(2)

) (
b(1) ⊗ b(2)

))
(3.69)

= (T ⊗ T )
(
a(1)b(1) ⊗ a(2)b(2)

)
(3.70)

= T
(
a(1)b(1)

)
⊗ T

(
a(2)b(2)

)
(3.71)

= T
(
a(1)
)
T
(
b(1)
)
⊗ T

(
a(2)
)
T
(
b(2)
)

(3.72)

=
(
T
(
a(1)
)
⊗ T

(
a(2)
)) (

T
(
b(1)
)
⊗ T

(
b(2)
))

(3.73)

= (T ⊗ T )(∆a)(T ⊗ T )(∆b) = ∆(T (a)∆(T (b)), (3.74)

ε(T (a)T (b)) = ε(T (ab)) = ε(ab) = ε(a)ε(b) = ε(T (a))ε(T (b)), (3.75)

S(T (a)T (b)) = S(T (ab)) = T (S(ab)) = T (S(b)S(a)) (3.76)

= T (S(b))T (S(a)) = S(T (b))S(T (a)). (3.77)

Hence the representation is a bialgebra. Finally the antipode S, which we define
as

S(T (a)) = T (S(a)), (3.78)

satisfies

µ ◦ (id⊗ S) ◦∆(T (a)) = µ ◦ (id⊗ S)(T (a(1))⊗ T (a(2))) (3.79)

= T (a(1))T (S(a(2))) = T (a(1)S(a(2))) (3.80)

= T (µ ◦ (1⊗ S) ◦∆(a)) = T (η ◦ ε(a)) (3.81)

= T (ε(a)1) = ε(a)T (1) = ε(a)1 = ε(T (a))1 (3.82)

= η ◦ ε(T (a)), (3.83)

which completes the list of Hopf algebra relations. Technically there is one more
thing we should take care of. We must define the actual function space that we
will use. Note that not every formal power series will be mapped to well-defined
function M → C. For that reason, we should restrict to some function space that
is closed under all maps like product, coproduct, etc. We will however neglect
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this technical issue, as it will not play a role in our applications. Then, up to
this technicality, we have proven the following.

Proposition 30. A phase space representation of a Hopf algebra is itself a com-
mutative Hopf algebra with the maps ∆, ε, S as constructed above.

The following result, which follows from prop. 24, applies in particular when we
deal with the κ-Poincaré algebra in section 3.5.

Proposition 31. Let S be the antipode of a representation T of a Hopf algebra
H on phase space T ∗M , with M some manifold, and suppose that in a certain
chart the coordinate functions pµ of M satisfy pµ = T (Pµ), where Pµ are (some
of the) generators of H. Let f = T (a) ∈ T (H) and assume that the power
series expansion of a ∈ H contains only the generators Pµ and no other ones
(Note that we are allowed to say ‘the’ expansion because there are no relations
in the tensor algebra). Then, with P being the ‘vector’ consisting of the Pµ,
and writing f = T (a(P )) ≡ f(P ) and with the obvious meaning of the function
f(S(P )) ∈ T (H), we have, for all p ∈M ,

S(f(P )) = f(S(P )) ≡ f ◦ (S(P )). (3.84)

Analogous results hold for the coproduct ∆ and co-unit ε. In words: evaluating
one of the structure maps ∆, ε and S of the represented algebra on some given
function, produces the same result as evaluating the structure map on the (ab-
stract) generators individually and then evaluating the original function on the
resulting (represented) Hopf algebra elements. In the following sections we will
investigate the case in which the premises of prop. 31 are satisfied.

3.4.2 The Composition Law

All the technical work of section 3.4.1 will now begin to pay off. In the remainder
of this chapter we prove that under suitable circumstances, namely those of prop.
31, a Hopf algebra can be used to define a composition law on a manifold that
makes the manifold into a group under this composition law. The manifold will
later become momentum space, so that we obtain in this way a composition law
of momenta, and a corresponding momentum conservation law.
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If the premises of prop. 31 are satisfied, the coproduct of the Hopf algebra H
allows us to define a composition law for points on the base manifold M as
follows. Given points p, q ∈ M on the manifold, we define the components of
p⊕ q in the given chart as

(p⊕ q)µ
def
= (∆ (Pµ)) (p, q) . (3.85)

Here we have written simply Pµ for its analog T (Pµ) in the representation, which
we will continue to do. Clearly, by defining the components of p⊕ q in the chart,
we are defining p⊕ q itself. Note, however, that if the coordinate functions map
the chart on M to a proper subset of Rn, the definition does not guarantee that
(p⊕ q)µ lies again inside the chart. This is something that has to be checked in
each separate case but it will pose no problem in our analysis of the κ-Poincaré
algebra later in this text.

3.4.3 Associativity of the Composition Law

Here we again identify points on the manifold with their vectors of components.
We have

((p⊕ q)⊕ k)µ = (∆ (Pµ)) (p⊕ q, k) = (∆ (Pµ)) ((∆ (P )) (p, q) , k) (3.86)

= P (1)
µ (∆ (P ) (p, q))P (2)

µ (k) = P (1)
µ (∆ (P )) (p, q)P (2)

µ (k) (3.87)

=
[
P (1)
µ (∆ (P ))⊗ P (2)

µ

]
(p, q, k), (3.88)

where we used the Sweedler notation. Now by the ∆-analog of prop. 31, we can
pull ∆ into functions of generators, i.e., we can write

P (1)
µ (∆(P )) = ∆(P (1)

µ (P )). (3.89)

Using this equality and the coassociativity axiom we find that

((p⊕ q)⊕ k)µ =
[
∆(P (1)

µ )⊗ P (2)
µ

]
(p, q, k) = [(∆⊗ id) ◦∆] (Pµ)(p, q, k) (3.90)

= [(id⊗∆) ◦∆] (Pµ)(p, q, k) =
[
P (1)
µ ⊗∆(P (2)

µ )
]

(p, q, k) (3.91)

= (p⊕ (q ⊕ k))µ , (3.92)

and hence the composition law induced by the Hopf algebra is associative.
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3.4.4 The Co-unit as Unit of the Composition Law

Next the co-unit of the Hopf algebra provides a unit element of the composition
law via 0̃µ = ε(Pµ). Later this unit will be interpreted as the origin of momentum
space. Note that we have

(p⊕ 0̃)µ = ∆Pµ (p, 0) = ∆Pµ (P, ε(P )) = P (1)
µ (p)P (2)

µ (ε(P )) (3.93)

= P (1)
µ (p) ε

(
P (2)
µ (P )

)
= P (1)

µ (p) ε
(
P (2)
µ

)
=
[
P (1)
µ ε

(
P (2)
µ

)]
(p) (3.94)

= [(1⊗ ε) ◦∆] (Pµ) (p) = id(Pµ)(p) = Pµ(p) = pµ. (3.95)

where we have used the co-unit axiom and the ε-analog of prop. 31. Similarly
we find that (0̃ ⊕ p) = p. Hence the phase space origin 0̃ is the identity with
respect to the composition law ⊕.

3.4.5 Antipode Provides Inverse Elements

Having used ∆ to provide the composition law, ε to provide the unit element,
finally show that S provides the inverse of any given element in M under the
composition law via

(	p)µ ≡ (S(Pµ))(p). (3.96)

We will now prove that this definition implies that

p⊕ (	p) = (	p)⊕ p = 0̃, (3.97)

where 0̃µ = ε(Pµ) is the unit defined previously. We have

(p⊕ (	p))µ = (∆Pµ) (p,	p) = P (1)
µ (p)P (2)

µ (	p) = P (1)
µ (p)P (2)

µ (S(P )(p)), (3.98)

where there is no Einstein summation. Writing P
(2)
µ = f(P ) for the moment, we

see that

P (2)
µ (S(P )(p)) = f(P )(S(P )(p)) ≡ (f ◦ P )(S(P )(p)) (3.99)

= f [P ((S(P )(p)))] = f [(S(P )(p))] = (f ◦ (S(P ))) (p) (3.100)

≡ f (S(P )) (p) = S(f(P ))(p) = S
(
P (2)
µ

)
(p). (3.101)
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where if we have written ≡ we have used the definition of how a function, like
f(P ), acts on a points p on the manifold. Substituting this last relation into the
former and using the antipode axiom, we obtain (again no Einstein summation)

(p⊕ (	p))µ = P (1)
µ (p)S

(
P (2)
µ

)
(p) =

[
P (1)
µ S

(
P (2)
µ

)]
(p) (3.102)

=
[
(µ ◦ (1⊗ S))

(
P (1)
µ ⊗ P (1)

µ

)]
(p) (3.103)

= [(µ ◦ (1⊗ S)) (∆Pµ)] (p) = [µ ◦ (1⊗ S) ◦∆] (Pµ) (p) (3.104)

= (η ◦ ε) (Pµ) (p) = η (ε(Pµ)) (p) = ε(Pµ) · 1(p) = ε(Pµ) (3.105)

= 0̃µ. (3.106)

Here µ is the multiplication map H⊗H → H and in the last line we used that the
unit of the algebra is the map that sends all p 7→ 1. The exact same procedure,
but where instead of 1⊗ S, S ⊗ 1 will appear, shows that we also have

(	p)⊕ p = 0̃. (3.107)

Combining the results of the last couple of sections yields the following.

Proposition 32. The composition law (p, q) 7→ p⊕q induced by the Hopf algebra
gives the manifold M the structure of a group. The identity element is given by
0̃ and the inverse of an element p is given by 	p, as defined above.

3.5 The κ-Poincaré Hopf Algebra

3.5.1 The Standard Basis

In section 3.3.2 we already encountered the algebra sector of the κ-Poincaré Hopf
algebra as an example to illustrate nonlinear basis transformations, but here is
where we officially introduce it, so we will repeat the formulas. In the standard
basis in 1 + 1 dimensions, the κ-Poincaré Hopf algebra sector is generated as an
h-adic algebra by P0, P1, N with relations

[P0, P1] = 0, [N,P0] = P1, [N,P1] = κ sinh(P0/κ). (3.108)
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The coproduct, co-unit and antipode are given on generators as

∆P0 = P0 ⊗ 1 + 1⊗ P0, (3.109)

∆P1 = P1 ⊗ eP0/2κ + e−P0/2κ ⊗ P1, (3.110)

∆N = N ⊗ eP0/2κ + e−P0/2κ ⊗N, (3.111)

ε(P0) = ε(P1) = ε(N) = 0, (3.112)

S(P0) = −P0, (3.113)

S(P1) = −eP0/2κP1e
−P0/2κ, (3.114)

S(N) = −eP0/2κNe−P0/2κ, (3.115)

and by prop. 24 this is enough to specify the these maps on the entire algebra.

3.5.2 The Bicrossproduct Basis

Applying the basis transformation of section 3.3.2, we arive at the bicrossproduct
basis, introduced in [13], which is the basis that is most often employed in physics
applications. As we have already seen, the algebra sector in this basis reads

[P0, P̃1] = 0, [N,P0] = P1, [N,P1] =
κ

2

(
1− e−2P0/κ

)
− 1

2κ
P 2

1 . (3.116)

For the coproduct, note that by Prop. 25, since P0 is a primitive element,
∆
(
eP0/2κ

)
= eP0/2κ ⊗ eP0/2κ. Using this, and the fact that ∆ is an algebra

morphism we easily obtain the coproducts in the bicrossproduct basis,

∆(P0) = P0 ⊗ 1 + 1⊗ P0, (3.117)

∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1, (3.118)

∆(N) = N ⊗ 1 + e−P0/κ ⊗N. (3.119)

And similarly, using the fact that ε is an algebra morphism and S and algebra
antimorphism, we obtain these maps in the bicrossproduct basis,

ε(P0) = ε(P1) = ε(N) = 0, (3.120)

S(P0) = −P0, S(P1) = −eP0/κP1, S(N) = −eP0/κN. (3.121)
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There exist a deformed version of the standard quadratic Casimir of the Poincaré
algebra, which is referred to as the quadratic Casimir of the κ-Poincaré algebra.
It is given in the bicrossproduct basis by

C = 4κ2 sinh2

(
P0

2κ

)
− (P1)2eP0/κ. (3.122)
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The κ-Poincaré Model

75





Chapter 4

κ-Poincaré: Free Particles

The κ-Poincaré Hopf algebra introduced in the previous chapter has been the
subject of a lot of research over the last couple of decades, often in connection
with physics. There are compelling arguments suggesting that this algebra might
emerge in certain limits of quantum gravity [14, 15, 16, 17]1. The κ-Poincaré al-
gebra is relevant in particular for the gravity-free, semi-classical limiting case
~, G→ 0 where the Planck mass

√
~/G (here and in the remainder of the thesis

we set c = 1) retains a finite value. There is agreement on the fact that in this
regime the Poincaré algebra should be somehow deformed. The hope is that in
the future someone will be able to obtain the κ-Poincare algebra as the symmetry
algebra of the above-mentioned ~→ 0, G→ 0 limit of some fundamental theory
of quantum gravity. Assuming that this is indeed possible, it is most natural to
expect that the deformation parameter κ would be given by some scalar multiple
of the Planck mass, with the scaling factor being roughly of order 1. Today one
therefore usually identifies κ simply with the Planck mass and this is what we
will do throughout this thesis as well.
In the preceding chapter we have developed quite a bit of theory about Hopf
algebras and in particular h-adic Hopf algebras like the κ-Poincaré Hopf alge-
bra. We also already made a connection with physics here and there. In this
chapter we will make this connection more explicit in the particular case of the
κ-Poincaré algebra.

1Other authors argue that it is not the κ-Poincaré algebra that emerges but some other
deformed algebra [18, 19, 20].
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The starting point for the κ-Poincaré model is the κ-Poincaré Hopf algebra in
the bicrossproduct basis, introduced in section 3.5.2. We will focus here on the
description in 1 + 1 dimensions, in which case the algebra sector reads

[P0, P1] = 0, [N,P0] = P1, [N,P1] =
κ

2

(
1− e−2P0/κ

)
− 1

2κ
P 2

1 , (4.1)

with Casimir

C = 4κ2 sinh2

(
P0

2κ

)
− (P1)2eP0/κ, (4.2)

which is the only known Casimir element of the algebra in 1+1 dimensions. At
this point only the algebra sector is relevant, and we will worry about the co-
algebra sector later when we consider interactions. We will use the same method
of obtaining the dynamics of this model as we did in section 1.3.2 for de Sit-
ter spacetime. That is, we will impose that the algebra generators P0, P1, N be
generators of a symmetry group that acts on the phase space of, at this stage,
a single particle. Employing the machinery Hamiltonian mechanics, we may do
this by representing the algebra on phase space and requiring that the Hamil-
tonian commute with the (represented) algebra generators. The most natural
choice of Hamiltonian therefore is (the representation of) the mass Casimir. Our
phase space will be the standard one, R4, consisting of elements of the form
(x0, x1, p0, p1), with standard Poisson brackets,

{xµ, pν} = δµν .

On this phase space the algebra can be represented by the functions

P0 = p0, P1 = p1, N = p1x
0 + x1

(
κ

2

(
1− e−2p0/κ

)
− (p1)2

2κ

)
, (4.3)

which satisfy

{P0, P1} = 0, {N,P0} = P1, {N,P1} =
κ

2

(
1− e−2P0/κ

)
− 1

2κ
P 2

1 . (4.4)
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This leads to the Hamiltonian

H = 4κ2 sinh2
( p0

2κ

)
− (p1)2ep0/κ. (4.5)

Since we want the mass of a particle to be an invariant of the symmetry group
as well, it is natural to postulate that the mass is also given by (the numerical
value of) the mass Casimir, as it is in the undeformed case. This leads to the
dispersion relation

4κ2 sinh2
( p0

2κ

)
− (p1)2ep0/κ = m2. (4.6)

Note that any scalar multiple2 of the mass Casimir C is still a Casimir, but, of
all these, only C reduces in the special relativistic limit, κ→∞, to the standard
dispersion relation m2 = (p0)2 − (p1)2. For a massless particle we have m2 = 0
and the dispersion relation reduces to

p1 = ±κ
(
1− e−p0/κ

)
. (4.8)

To find the worldines of particles, we use Hamilton’s equations,

ṗµ = {pµ, H} = 0, ẋ0 = {x0, H} = 2κ sinh
(p0

κ

)
− (p1)2ep0/κ

κ
, (4.9)

ẋ0 = {x1, H} = −2p1e
p0/κ. (4.10)

The first equation shows that all momenta are constants of motion, and since

dx1

dx0
=
ẋ1

ẋ0
=

2κp1

κ2
(
e−

2p0
κ − 1

)
+ (p1)2

=: Rp (4.11)

2In fact any function f(C) of the (represented) Casimir is again an invariant, because for
any symmetry generator G we have

d

dλ
f(C) = {f(C), G} = f ′(C) {C,G} = f ′(C) · 0 = 0, (4.7)

where λ is the group parameter corresponding to G. Hence the definition of mass in this
context is somewhat ambiguous. Later we will derive, by postulating that momentum space
has de Sitter geometry, a nontrivial such function f and hence an alternative definition of mass,
which has the arguable advantage that the mass coincides with the rest energy of the particle,
which here is not the case. These two definitions of mass, however, do always agree on whether
a particle is massive or massless.
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is again a constant on motion, the worldline of a particle with momentum p is
given by a straight line with slope Rp,

x1 = x̄1 +Rpx
0, (4.12)

where x̄1 is an arbitrary constant, denoting the spatial position of the particle at
vanishing x0. For massless particles the slope Rp and the worldine conveniently
reduce to

Rp = −sgn(p1)ep0/κ, x1 = x̄1 − sgn(p1)ep0/κx0. (4.13)

Here we have assumed that the energy p0 is nonnegative, which we will continue
to do throughout. This shows that the velocity of a massless particle of energy
p0 is not simply given by the ‘speed of light’ (which is 1 in our units), but by
ep0/κ. This velocity is bounded from below by the speed of light (since p0 > 0),
but increases with increasing energy. Similarly, the energy dependence of the
velocity of massive particles is deformed with respect to Special Relativity.

4.1 Intermezzo: Symmetries and Inertial Ob-

servers in Special Relativity

In order to fully appreciate the upcoming section 4.2 about observers in κ-
Poincaré it is convenient to have the corresponding facts for Special Relativity
near at hand. We briefly develop those facts here for the 1+1 dimensional case,
working in a phase space setting.

Inertial observers in Special Relativity are defined via their symmetry group,
which is the (identity component of the3) Poincaré group. In general, if we say
that an observer A is related to an observer B by a (symmetry) transformation
φ we mean that the the phase space coordinates of observer A are obtained from
those of B by acting on them with φ. The (identity component of the) Poincaré
group in 1+1 dimensions consists of the basic translations and boosts and any

3There are no observers for which the time direction or parity is reversed.
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finite composition of those basic transformations. The action of translations over
aµ and boosts with rapidity ξ on the phase space of a particle is

Ta

(
xµ

pµ

)
=

(
xµ + aµ

pµ

)
, Λξ

(
xµ

pµ

)
=

(
Λµ

ν x
ν

Λµ
ν pν

)
, (4.14)

where

Λµ
ν =

(
cosh ξ sinh ξ
sinh ξ cosh ξ

)
and Λµ

ν =
(
Λ−1

)µ
ν =

(
cosh ξ − sinh ξ
− sinh ξ cosh ξ

)
.

(4.15)

We have used standard notation for the inverse of the Lorentz transformation. We
need the inverse Lorentz transformation because we are dealing with the covari-
ant (in contrast to contravariant) form of the momenta. (The above symmetries
can be derived easily by computing the Killing vectors of Minkowski space, and
exponentiating their action on the coordinates of the cotangent bundle, either
to Minkowski spacetime or Minkowski momentum space. Since Ta ◦ Tb = Ta+b

and Λξ ◦ Λζ = Λξ+ζ , and since the following ‘commutation’ relation holds for
translations Ta over aµ and boosts Λξ of rapidity ξ,

Ta ◦ Λξ = Λξ ◦ Ta′ , (a′)µ = Λµ
νa

ν , (4.16)

we can write any transformation between inertial observers as a composition of
a single boost with a single translation. Thus two observers in Special Relativity
are necessarily related by a transformation of the form

Λξ ◦ Ta. (4.17)

There are two important observations we have to make here. First, notice that
with respect to the action of these symmetries, spacetime and momentum space
are completely decoupled, in the sense that a transformed spacetime coordinate
depends only on the initial position and not the initial momentum, and that
a transformed momentum depends only on the initial momentum and not the
initial position. And moreover, the spacetime part of the transformation, say
xµ → Λµ

νx
ν + aµ, determines uniquely the transformation as a whole, including

the momentum part. This justifies the fact that in Special Relativity we usually
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relate different inertial observers by a spacetime transformation. We tend to take
it for granted that this is possible, but in general it need not be the case. Indeed,
we will see that observers in κ-Poincaré cannot be defined by a spacetime trans-
formation alone; a complete phase space transformation has to be provided.
The second crucial property of these transformations is the fact that (a′)µ as in
eq. (4.16) is again a constant, i.e., does not depend on xµ or pµ. If this were not
the case, then Ta′ would not be an ordinary translation and we would therefore
encounter additional transformations, like Λ−ξ ◦Ta ◦Λξ = Ta′ , that might not be
expressible in the form Λξ ◦ Ta. We will see that the latter is true for κ-Poincaré
symmetry transformations.

4.2 Symmetries and Inertial Observers

4.2.1 Symmetries

The κ-Poincaré algebra, regarded as an algebra of infinitesimal transformations,
can be integrated to yield finite phase space transformations. For translations
this is trivial: since the translation generators are just the different components
of momentum, which have canonical Poisson brackets with positions, a finite
translation over aµ is simply given by

pµ → pµ, xµ → xµ − aµ. (4.18)

The finite form of the boosts was derived in [25] and used in [21] to construct
the κ-Poincaré model. We here state the results in 1 + 1D. By integrating the
infinitesimal action on momenta (note that these do not involve spacetime posi-
tions at all),

p0 → p0 + ξ{N, p0} = p0 + ξp1, (4.19)

p1 → p1 + ξ{N, p1} = p1 + ξ

[
κ

2

(
1− e−2p0/κ

)
− 1

2κ
p2

1

]
, (4.20)
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it follows that a finite boost of rapidity ξ, written xµ → x̃µ, E → Ẽ, p→ p̃, with
E ≡ p0 and p ≡ p1 for readability, acts on momenta as

Ẽ = E + log

[(
cosh(ξ/2) +

p

κ
sinh(ξ/2)

)2

− e−2E/κ sinh2(ξ/2)

]
, (4.21)

p̃ = κ

[(
cosh(ξ/2) + p

κ
sinh(ξ/2)

) (
sinh(ξ/2) + p

κ
cosh(ξ/2)

)(
cosh(ξ/2) + p

κ
sinh(ξ/2)

)2 − e−2E/κ sinh2(ξ/2)

− e−2E/κ sinh(ξ/2) cosh(ξ/2)(
cosh(ξ/2) + p

κ
sinh(ξ/2)

)2 − e−2E/κ sinh2(ξ/2)

]
. (4.22)

The spacetime coordinates transform precisely as covectors to momentum space,

x̃µ = xν
∂pν
∂p̃µ

. (4.23)

This indeed coincides infinitesimally with the infinitesimal action

x0 → x0 + ξ{N, x0} = x0 − ξe−2p0/κx1, (4.24)

x1 → x1 + ξ{N, x1} = x1 + ξ

(
p1x

1

κ
− x0

)
. (4.25)

In the limit κ → ∞ all transformations reduce to those of Special Relativity
(although with ξ replaced by −ξ, but this is merely the result of our conventions).
We will not be concerned in this thesis with discrete symmetries like, for instance,
time inversion. Therefore we define the κ-Poincaré symmetry group as the group
generated by translations and boosts. Do not confuse this with what is usually
called the κ-Poincaré group, which is a Hopf algebra dual to the κ-Poincaré Hopf
algebra4.

4.2.2 Inertial Observers

It is important to give a clear definition of what is meant by an inertial observer
in the κ-Poincaré setting. And as in Special Relativity, the way to do this is by

4Sometimes the κ-Poincaré Hopf algebra is also referred to as the κ-Poincaré group. The
terminology depends on the author.
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defining the symmetry group relating inertial observers. Again, in general, if we
say that an observer A is related to an observer B by a (symmetry) transforma-
tion φ we mean that the the phase space coordinates of observer A are obtained
from those of B by acting on them with φ. The (minimal5) natural candidate for
this symmetry group in the present case is the group consisting of (κ-) transla-
tions and (κ-) boosts and any finite composition of those basic transformations.
Denoting these translations and boosts by Ta and Λξ, respectively, it turns out
that Ta ◦Tb = Ta+b and Λξ ◦Λζ = Λξ+ζ , just as is the case Special Relativity, but
the ‘commutation relation’ (4.16) is now replaced by

Ta ◦ Λξ = Λξ ◦ Ta′(p), a′(p)µ =
d (Λξ)ν

dpµ
(p)aν , (4.26)

which is easily verified. (In the definition of a′(p), Λξ is understood to be the
momentum part of the full phase space transformation.) To first order in ξ we
can write a′(p) as

a′(p)0 = a0 + ξe−2p0/κa1, (4.27)

a′(p)1 = a1 − ξ
(
p1a

1

κ
− a0

)
. (4.28)

We stress that writing Ta′(p) here is, a priori, an abuse of notation, because a′(p)
is not a constant (it depends on pµ), so Ta′(p) is not an ordinary translation. Its
action on the phase space of a particle is

Ta′(p) (x, p) = (x+ a′(p), p) , (4.29)

which looks like a translation, but with a momentum-dependent translation pa-
rameter a′(p). We will refer to these transformations as a(p)-translations or
momentum-dependent translations. This kind of transformation is a symmetry
of phase space. Actually, even in Special Relativity it is a symmetry of phase,
but the crucial difference with the present case is that now the symmetry actually
relates inertial observers, which in Special Relativity it does not, the reason be-
ing that in the present case the transformation can be written as a composition
of our basic κ-translations and κ-boosts

Ta′(p) = Λ−ξ ◦ Ta ◦ Λξ, (4.30)

5i.e., consisting of the fewest transformations.



4.3. COMPATIBILITY WITH RELATIVE LOCALITY 85

in contrast to Special Relativity. In the limit κ→∞, we recover the known facts
of Special Relativity, because in that case a′(p)µ → Λµ

ν a
ν , which is a constant

four-vector.

An essential difference with Special Relativity (section 4.1) is that κ-Poincaré ob-
servers may be related by symmetries for which spacetime and momentum space
do not decouple: the action of Ta′(p) on x depends on the accompanying mo-
mentum p. Hence, contrary to what is the case in Special Relativity, we cannot
identify observers in κ-Poincaré by a spacetime transformation alone. A full
phase space transformation is required. This is in essence the reason that the
theory features Relative Locality effects (see section 2).

4.3 Compatibility with Relative Locality

In this section we discuss the compatibility of the free-particle κ-Poincaré model
with Relative Locality (section 2). Although an important part of the Relative
Locality Framework (RLF) is its description of interactions, here we are dis-
cussing only free-particle systems, so we will ignore the interaction part (and
return to it in the subsequent chapters). We will see that the κ-Poincaré model
is indeed compatible with the RLF, up to a redefinition of mass (which poses no
problem at all), at least when interactions are disregarded. In the next chapter
we will find, however, that this will not be the case (at least not in a covariant
way) when interactions are taken into account.

To show that the single-particle κ-Poincaré model is compatible with the RLF
we need to find a momentum space geometry that reproduces, via the equations
of the RLF, all equations of the κ-Poincaré model. This geometry turns out to
be de Sitter. This was derived in [21], and in section 4.3.1 we will show the
reasoning behind it. At this point we will simply observer that it works.
In chapter section 2.3 the de Sitter Relative Locality model (dS-RL) has already
been discussed. Hence our only task at this points is to note that the two
free-particle models, although derived in a completely different way, are in fact
identical. Well, not precisely identical; the only difference is in their definition
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of the mass of a particle,

κ-Poincaré : m2 = 4κ2 sinh2
( p0

2κ

)
− (p1)2ep0/κ, (4.31)

dS Relative Locality : m̃ = κ arccosh

(
cosh

p0

κ
− e

p0
κ

(p1)2

2κ2

)
, (4.32)

where we have denoted the κ-Poincaré mass by m and the dS-RL mass by m′.
It can be checked easily that

m̃ = κ arccosh

(
m2

2κ2
+ 1

)
, (4.33)

so there is a one-to-one relationship between a given m and a given m̃ (at least
assuming they are both non-negative, which we will always do). Both definitions
have the correct special relativistic limit, and m = 0 if and only if m̃ = 0. The
arguable advantage of the dS-RL mass is that m̃ coincides with the rest mass
of the particle, while m does not. Of course, the same interpretation can be
achieved in the κ-Poincaré model by simply redefining the mass of a particle
according to the formula above. Hence we may say that the two models are
equivalent, if not identical. The κ-Poincaré model for free particles is therefore
completely compatible with the RLF as a κ-Poincaré-invariant theory6.

The Reason that the Two Models Coincide

If it seems mysterious why the two models, using completely different methods,
arrive at the same theory, we will provide here, for completeness, the – admittedly
not particularly insightful – mathematical reason. In both approaches the mo-
menta are trivially constant, and the equation of motion for xµ, in the geometric
approach is

ẋµ = −N ∂D2(p)

∂pµ
, (4.34)

6 The careful reader might remember from chapter 2 that the translations, as we have
defined them in the present chapter, are not symmetries of the full RLF, and may therefore
wonder why we are stating here that the model is compatible with the RLF as a κ-Poincaré-
invariant theory. The point is that as long as we ignore interactions, which we are doing here,
these translations are in fact a symmetry of the RLF, because the only reason that they would
not be is the presence of interaction vertices.
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with N some Lagrange multiplier and D(p) the geodesic distance from p to the
origin of momentum space. The point is that this geodesic distance D(p) can be
written as a function of the Casimir C, namely

D = κ arccosh

(
C

2κ2
+ 1

)
, (4.35)

and hence we can write (4.34) as

ẋµ = −N ∂D2(p)

∂pµ
= −2N

∂D(p)

∂pµ
= −2N

∂D(p)

∂C

∂C

∂pµ
= −2N

∂D(p)

∂C
{xµ, C}.

(4.36)

This shows that the quotient ẋ1/ẋ0 is given by the same expression in the two
approaches, and therefore the worldlines are the same.

4.3.1 κ-Poincaré Momentum Space

At this point it is convenient to give a clear description of the momentum space
corresponding to the κ-Poincaré model. We have just seen that the model co-
incides with the RLF model when one postulates that momentum space has de
Sitter geometry with dS radius κ. But even without referring to the RLF, we can
associate to the κ-Poincaré model a dS momentum space, following [21]. First
of all, one can check that the κ-Poincaré boosts (4.21) leave the comoving dS
momentum space metric ds2 = dE2 − e2p0/κdp2 invariant. But there is a more
constructive derivation. Since we have identified the κ-Poincaré Hopf algebra
generators with coordinate functions of the momentum space manifold, a change
of coordinates corresponds to a (nonlinear) basis change of the Hopf algebra.
With this in mind, let us apply the transformation that we also used in chapter
1 relating dS comoving coordinates and Minkowski embedding coordinates, given
by

η0 = κ sinh

(
E

κ

)
+
eE/κP 2

2κ
, (4.37)

η1 = eE/κP, (4.38)

η2 = κ cosh

(
E

κ

)
− eE/κP 2

2κ
. (4.39)
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In the new basis according to this nonlinear change, the algebra sector of the
κ-Poincaré Hopf algebra reads

[η0, η1] = 0, [N, η0] = η1, [N, η1] = η0, (4.40)

which we recognize as the undeformed Poincaré algebra. This suggests that
the coordinate functions ηµ corresponding to these generators should be the co-
ordinate functions of flat Minkowski space, although with the constraint that
−η2

0 + η2
1 + η2

2 = κ2. This is precisely the definition of the dS submanifold of
Minkowski space. Transforming back to the basis corresponding to the genera-
tors E and p, we may now interpret this nonlinear change as a coordinate trans-
formation on the momentum space manifold, leading us naturally to comoving
coordinates as a preferred coordinate system on dS momentum space, just like
Minkowski coordinates constitute a preferred coordinate system on Minkowski
space.
Not all of dS space is covered by physical momenta, however. First of all, ac-
cording to the preceding derivation, the momenta lie only the comoving chart.
In Minkowski embedding coordinates this chart consists of the points (η0, η1, η2)
which satisfy η0 + η2 > 0. But there are two additional restrictions. For in-
stance, we require particles to have nonnegative energies, p0 ≥ 0. In embedding
coordinates this means that

log

(
η0 + η2

κ

)
≥ 0, i.e., η0 + η2 ≥ κ. (4.41)

Also, we only allow particles with nonnegative mass7. Since

m̃ = κ arccosh

(
cosh

p0

κ
− e

p0
κ

(p1)2

2κ2

)
= κ arccosh

(η2

κ

)
, (4.42)

this requires that η2 ≥ κ. Hence in terms of embedding coordinates, the momen-
tum space of the κ-Poincaré model is nicely summarized by fig. 4.1.

7We stress again that m̃ ≥ 0 is equivalent to m ≥ 0, so that it does not matter in this
regard which definition of mass we use.
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Figure 4.1: κ-Poincaré momentum space in 1+1 dimensions, embedded in 2+1
dimensional Minkowski space. The hyperboloid consisting of the green and yellow
patches represents the entire dS space. The part of dS space above the diagonal
blue (η0 + η2 = κ) plane is the part of dS space which is described by comoving
coordinates (p0, p1). And the part of this which, additionally, lies in ‘front’
of the vertical blue (η2 = 0) plane corresponds to momenta with a real (and
automatically nonnegative) mass; this part, the actual κ-Poincaré momentum
space, is colored green.



90 CHAPTER 4. κ-POINCARÉ: FREE PARTICLES

4.4 Phenomenology

4.4.1 Lateshift

We are now in the position to describe an interesting effect in de Sitter momentum
space, comparable to, and in a sense dual to, the redshift effect for de Sitter
spacetime discussed in 1.3.3. Where in that case we considered two photons
emitted at different times with the same energy, we now consider two photons
emitted at the same time with different energies. First let us write down the
action of aµ-translations on phase space. Note that phase space now has the
standard Poisson structure, without the extra minus, and this gives an overall
sign difference with the dS spacetime formulas (at least in the Special Relativistic
limits, where the two models should yield the same formulas). So it seems most
natural to add an overall minus sign to the definition translation parameter aµ in
the present analysis. This does not change any physics, of course, but it makes
it easier to compare the formulas. The translations then act as follows

x0 → x0 − a0, (4.43)

x1 → x1 − a1, (4.44)

p0 → p0, (4.45)

p1 → p1. (4.46)

We again consider two observers, Alice and Bob. Alice emits both photons from
her spacetime origin, with energies p0 and p̃0. For the first photon, the worldline
is simply

x1
A = ep0/κx0

A, (4.47)

given that it moves to the ‘right’. Bob is defined in a similar way as in section
1.3.3, by a translation with respect to Alice in such a way that the first photon
crosses his spacetime origin. Using the action of the translations we find that
this is the case if and only if the translation parameters satisfy

a1 = ep0/κa0. (4.48)

The photon’s worldline will then be described by Bob as

x1
B = ep0/κx0

B (4.49)
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and it is easy to see that the time, according to Bob, that the first photon was
emitted by Alice and the time it was received by himself are given by

x0
B@A = −a0, x0

B@B = 0. (4.50)

Here we use again the notation with subscripts (or superscripts) like B@A, which
means that the given quantity is evaluated by Bob, “B”, at Alices spatial ori-
gin, “@A”. The second photon will be described by Bob as traveling along the
worldline

x̃1
B = ep̃0/κx0

B + a0
(
ep̃0/κ − ep0/κ

)
, (4.51)

so the time at which Bob measures it (i.e., when x1
B = 0) is given by

x̃0
B@B = −a0

(
1− e(p0−p̃0)/κ

)
(4.52)

and the time, according to Bob, that Alice emitted it (i.e., when x̃1
B = −a1) is

x̃0
B@A = −a0. (4.53)

Hence if we define the travel times according to Bob as

∆Bx̃
0 = x̃0

B@B − x̃0
B@A, ∆Bx

0 = x0
B@B − x0

B@A, (4.54)

then we obtain the formula

∆Bx̃
0 = e−(p̃A@A

0 −pA@A
0 )/κ∆Bx

0. (4.55)

Comparing this to the previously obtained formula (1.78),

p̃B@B
0 = e−H(∆Ax̃

0−∆Ax
0)pB@B

0 , (4.56)

for de Sitter spacetime, we notice a very interesting duality between the two
cases! The two formulas are basically the same, but with the roles of p0 and ∆x0

interchanged. This was first discovered in the paper [33] (see also [34]), where
this new effect, dual to redshift, was dubbed lateshift.
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Chapter 5

κ-Poincaré with a Single
Interaction

5.1 The Deformed Momentum Conservation Law

As explained in section 3.4.2, the κ-Poincaré Hopf algebra determines a momen-
tum composition rule according to

(p⊕ q)µ = (∆(Pµ))(p, q), (5.1)

where the relevant coproducts ∆(Pµ) are given by equations (3.117),(3.118),

∆(P0) = P0 ⊗ 1 + 1⊗ P0, (5.2)

∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1. (5.3)

The momentum composition rule thus becomes

(p⊕ q)0 = p0 + q0, (p⊕ q)1 = p1 + e−p0/κq1. (5.4)

This composition rule will be interpreted as a deformed momentum conservation
law. In e.g. the interaction p, q → k the total momentum, calculated with ⊕,
should be conserved:

p⊕ q !
= k. (5.5)

93
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Note that ⊕ is associative (see section 3.4.3) but not commutative, so it does
matter in which order we add the momenta. There are different proposals in
the literature on how to cope with this fact. One is the postulate that particles
really can interact with different relative ‘orderings’, corresponding to different
total momenta; another is that one should use a symmetrized composition law:

p⊕symm q =
1

2
(p⊕ q + q ⊕ p) = q ⊕symm p. (5.6)

In this text we will mainly stick to the former proposal.

Consistency check
An important consistency check should be performed at this point, relating the
dispersion relation (4.6) with the momentum composition rule (5.4). Namely,
we need to make sure that if p, q are the momenta of two physical particles then
p ⊕ q is again the momentum of a physical particle, that is, (p ⊕ q)0 must be
again nonnegative and there must be some mass for which p ⊕ q satisfies the
dispersion relation. The first requirement is trivially satisfied. And looking at
the dispersion relation, we immediately see that the statement that there is some
mass for which a given momentum p satisfies the dispersion relation, is equivalent
to the one that

4κ2 sinh2
( p0

2κ

)
− (p1)2ep0/κ ≥ 0, (5.7)

which in turn is equivalent to

|p1| ≤ κ
(
1− e−p0/κ

)
. (5.8)

Now suppose that the momenta p and q satisfy this relation and let k = p ⊕ q.
Then we easily see that

|k1| = |p1 + e−p0/κq1| ≤ |p1|+ e−p0/κ|q1| ≤ κ
(
1− e−p0/κ

)
+ e−p0/κκ

(
1− e−q0/κ

)
(5.9)

= κ
(
1− e−(p0+q0)/κ

)
= κ

(
1− e−k0/κ

)
(5.10)

and hence p ⊕ q is indeed again the momentum of a physical particle. In other
words, the physical momentum space is closed under the composition law.
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Group Structure

As discussed in section 3.4 the momentum composition law induced by the κ-
Poincaré Hopf algebra makes momentum space into a group. The unit element
is given in terms of the co-unit of the Hopf algebra in the bicrossproduct basis
as

0̃µ = ε(Pµ) = 0. (5.11)

This momentum will be called the origin of momentum space. Thus the origin of
momentum space is simply the point that has vanishing comoving coordinates.
Similarly the inverse of a momentum pµ is provided by the antipode of the Hopf
algebra via

(	p)µ ≡ (S(Pµ))(p), (5.12)

which leads to

(	p)0 = −p0, (	p)1 = −ep0/κp1. (5.13)

One easily checks that we indeed have

p⊕ (	p) = (	p)⊕ p = 0̃.

5.2 Symmetries

By the very construction of the theory, the translations and boosts are symme-
tries of the free-particle κ-Poincaré model. When interactions are present, how-
ever, we must also check if the symmetries leave the momentum conservation law
invariant. The usual requirement is that if p⊕ q = k then φ(p)⊕φ(q) = φ(k) for
any symmetry transformation φ. We will find, however, that we need to gener-
alize this requirement, because it is in fact a little too restrictive and does not
hold for boosts, while a generalized version does. For translations it is a trivial
exercise to see that that the requirement does hold because the translations do
not affect the momenta, i.e., for translations φ(p) = p.
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5.2.1 Boosts and the Backreaction

To see that the usual covariance requirement (p⊕q = k ⇒ Λξ(p)⊕Λξ(q) = Λξ(k),
denoting a boost of rapidity ξ by Λξ) does not hold for the deformed boosts it
suffices to consider two massless particles, the spatial momenta of which we may
express as

p1 = κ
(
1− e−p0/κ

)
, (5.14)

q1 = κ
(
1− e−q0/κ

)
(5.15)

in terms of their energies. Then it follows that the composed momentum is also
massless, (p⊕ q)1 = κ

(
1− e−(p⊕q)0/κ

)
, and the boosts simplify enormously. We

compute that

(Λξ(p⊕ q))1 = κ− κ

eξ
(
e
p0+q0
κ − 1

)
+ 1

, (5.16)

whereas

(Λξ(p)⊕ Λξ(q))1 = κ− κ

(eξ (ep0/κ − 1) + 1) (eξ (eq0/κ − 1) + 1)
, (5.17)

which is clearly not for all p0, q0 equal to the former expression. Hence the usual
covariance condition is not satisfied. However, it was shown in [35], and applied
in the present setting in [21], that a generalized covariance condition holds for
the κ-Poincaré conservation law under boosts. In this generalization, different
momenta are not necessarily boosted with the same rapidity. Although one
cannot guarantee that

p⊕ q = k ⇒ Λξ(p)⊕ Λξ(q) = Λξ(k), (5.18)

it turns out one can guarantee that

p⊕ q = k ⇒ Λξ(p)⊕ Λξ′(q) = Λξ(k), (5.19)

provided that ξ′, the rapidity of the second incoming particle of a vertex, is a
suitable function of ξ and p. This then renders the model invariant under boosts.
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The functional form of ξ′ turns out to be

ξ′ = ξ / p ≡ 2arcsinh

 sinh
(
ξ
2

)
e−

p0
κ√(

cosh
(
ξ
2

)
+

p1 sinh( ξ2)
κ

)2

− sinh2
(
ξ
2

)
e−

2p0
κ

 . (5.20)

This expression is always well-defined, i.e., the argument of the square root is
always positive and nonzero, but we postpone the proof of this until we have
the expression in embedding coordinates (section 5.4.2). The conservation law
is indeed invariant when boosts are applied to interacting particles in this way.
The map (ξ, p) 7→ ξ′ = ξ / p is called the backreaction of p on ξ. One also says
that the particle with momentum q ‘gets a backreaction’ form the particle with
momentum p. Next let us see what this implies for more general interactions.
Consider the process p, q, `→ k. We want to know how each individual particle in
this interaction needs to transform under a boost (that is, with what rapidity),
given that the first1 incoming particle (which we take by convention to be p)
transforms with rapidity ξ. Treating q⊕` as a single momentum for the moment,
we know, given the above conclusion, that the conservation law p⊕ q ⊕ ` = k is
invariant if q ⊕ ` transforms with rapidity ξ / p, while p and k transform with ξ.
By the same logic, if q ⊕ `, as a single momentum, transforms with ξ / p, then q
should transform with ξ /p and ` should transform with (ξ /p)/q. In conclusion,
if p⊕ q ⊕ ` = k then it follows that

Λξ(p)⊕ Λξ/ p(q)⊕ Λ(ξ/ p)/q(`) = Λξ(k) (5.21)

and hence this ensures that also the reaction p, q, l→ k behaves covariantly under
boosts, provided the momenta transform as indicated. This is easily generalized
to arbitrary interactions p(1) + · · · + p(N) → k(1) + · · · + k(M): each p(i) should
transform with rapidity ξi = ξ / p(1) / · · · / p(i−1), and each k(i) should transform
with rapidity ξ′i = ξ / k(1) / · · · / k(i−1), i.e., a given incoming (outgoing) particle
gets a backreaction from all incoming (outgoing) particles that come before it in
the order of composition. The rapidity ξ with which the first incoming particle

1By convention, we take the order of the incoming/outgoing particles as that in which they
are written down in an expression like p+ q + `→ k.
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and the first outgoing particle transform, and which determines all of the other
rapidities, is called the bare rapidity. This guarantees that the conservation law
is invariant: if p̃(i) = Λξi

(
p(i)
)

and k̃(i) = Λξ′i

(
k(i)
)

then we have the equivalence

p(1) ⊕ · · · ⊕ p(N) = k(1) ⊕ · · · ⊕ k(M) ⇔ p̃(1) ⊕ · · · ⊕ p̃(N) = k̃(1) ⊕ · · · ⊕ k̃(M).
(5.22)

This modified action of boosts on interacting particles renders the theory invari-
ant under boosts, and hence under the whole κ-Poincaré transformation group,
at least when one considers only particles that can interact at most once in there
lifetimes. We will see in the next chapter, that this method is not sufficient to
deal with particles that undergo multiple interactions. For that case, however,
we have developed an extended version of this single-interaction ‘backreaction
method’, which does succeed in making the momentum composition law (and
hence the entire model) behave covariantly for a large class of scenarios with
multiple interactions. This is our main new result.

The Backreaction Is a Right Action

Here we prove that the backreaction (ξ, p) 7→ p / ξ, as introduced above, is a
right action of the group of momenta on the group of boosts or, equivalently, on
the rapidities. We have seen that

Λξ(p⊕ q) = Λξ(p)⊕ Λξ/ p(q) (5.23)

for all p, q. Now we apply this identity in two ways to p⊕ q⊕k, the associativity
of the composition law ensuring that the two expressions are equal:

Λξ(p⊕ (q ⊕ k)) = Λξ(p)⊕ Λξ/ p(q ⊕ k) = Λξ(p)⊕ Λξ/ p(q)⊕ Λ(ξ/ p)/ q(k), (5.24)

Λξ((p⊕ q)⊕ k) = Λξ(p⊕ q)⊕ Λξ/ (p⊕q)(k) = Λξ(p)⊕ Λξ/ p(q)⊕ Λξ/ (p⊕q)(k).
(5.25)

Using the fact that momenta form a group under ⊕, and that the expressions
must be equal for all k, this is equivalent to

Λ(ξ/ p)/ q = Λξ/ (p⊕q), (5.26)
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which, since boosts of different rapidities are not equal2, implies that

(ξ / p) / q = ξ / (p⊕ q). (5.27)

Also one quickly verifies that ξ / 0 = ξ, so that / is indeed a right action.

5.3 Compatibility with Relative Locality

5.3.1 Translations

As discussed in section 2.2, translations should be implemented in the Relative
Locality framework (RLF) by translating the zµ coordinates, instead of the xµ

coordinates in order for the theory to be translation invariant. These alternative
translations are given by

zµ → zµ + aµ, x̃µI = xµI ∓ a
ν ∂Kν

∂pIµ
(pI), (5.28)

where the upper sign corresponds to outgoing particles in the zµ interaction ver-
tex and the lower sign to incoming particles. Of course, these translations are
still a symmetry of the κ-Poincaré model as well, since they do not affect the
momenta (and hence the dispersion relation and the conservation law) and only
change the spacetime coordinates by a time-independent factor, leaving the equa-
tion of motion invariant. With these translations the κ-Poincaré model becomes
compatible with the RLF as a translation-invariant theory. It is a consequence
of the fact that the two were compatible in the noninteracting (chapter 4) case
and the fact, discussed in section 2.2, that the additional ‘interaction’ equation,

xµI (λ0) = ∓zν ∂Kν

∂pIµ

∣∣∣∣
λ=λ0

, (5.29)

coming from the RLF, is also left invariant by these translations.

2This can be checked for instance by looking at massless particles, for which the boosts
simplify enormously
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5.3.2 Boosts

For boosts the situation is a bit more complicated, and it turns out that the κ-
Poincaré model is not compatible with the RLF as a boost-invariant theory. The
reason is that the interaction equation (5.29) cannot be made boost-invariant.
One might hope to define a suitable transformation behavior of zµ under boosts3

such that the equation would be left invariant, but this is not possible. Let us
see why. The required transformation of zµ is found by writing down eq. (5.29)
in the boosted system, substituting the known transformations of xµ and pµ, and
solving for the transformed zµ. The result is that zµ should transform according
to

z → z̃
!

= z
∂K

∂pI
∂pI

∂p̃I

(
∂K̃

∂p̃I

)−1

, (5.30)

written in matrix notation. We can understand immediately why this leads to
trouble. Eq. (5.30) has to hold for each particle I in the interaction. Hence
all the different expressions for z̃ would have to conspire in some way in order
for the transformation to be well-defined. For the κ-Poincaré model this does
not happen, and the reason for this turns out to be the nontriviality of the
backreaction (section 5.2.1). One can prove, but we leave this to the reader, that
when the backreaction is trivial (that is, absent) then the transformation of zµ

can be simplified to

z̃ = z
∂K

∂K̃
, (5.31)

which does not depend anymore on the particle. But when the backreaction is
nontrivial this is not the case, and indeed in the case of the κ-Poincaré model the
transformation (5.30) is ill-defined. In chapter 7 we will modify the momentum
composition law, so that it does not need a backreaction, and hence in that case
the transformation of zµ will in fact be well-defined.

3Only the boost behavior of xµ and pµ is defined at this point, not that of zµ.
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5.4 Description in terms of Minkowski Embed-

ding Coordinates

Here we reformulate the κ-Poincaré model in terms of Minkowski embedding
coordinates (on momentum space) instead of comoving coordinates. This can
be very useful in certain situations. One important remark, though, is that in
embedding coordinates the limit κ→∞ is ill-defined and makes no sense4. This
is basically because the coordinate transformation to embedding coordinates is
only defined for finite κ. This is important to keep in mind; if we are inter-
ested in the Special Relativistic limit we should always first go back to comoving
coordinates and only then take the limit.

5.4.1 Boosts

As explained in chapter 1, comoving coordinates and Minkowski embedding coor-
dinates of de Sitter space are related, in 1+1 (dS) dimensions, by the embedding

η0 = κ sinhE/κ+ eE/κ
p2

2κ
, (5.32)

η1 = eE/κp, (5.33)

η2 = κ coshE/κ− eE/κ p
2

2κ
, (5.34)

the image of which consists of those (η0, η1, η2) that satisfy η1 + η2 > 0. The
inverse map is given by

E = κ ln

(
η0 + η2

κ

)
, p =

κ η1

η0 + η2

. (5.35)

It turns out that the κ-Poincaré boost of rapidity ξ coincides precisely with the
usual Lorentz boost of rapidity ξ of the ambient Minkowski space,

η̃0 = cosh(ξ)η0 + sinh(ξ)η1, η̃1 = sinh(ξ)η0 + cosh(ξ)η1, η̃2 = η2, (5.36)

4Unless at the same time one sends η2 →∞.
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i.e., the κ-Poincaré boosts are in essence simply Lorentz boosts. This is easily
generalized to higher dimensions. The κ-Poincaré boost in the i-direction will
correspond to the Minkowski boost in the i-direction, and the κ-Poincaré rotation
(which is undeformed) in the ij-plane will correspond to the same rotation in
Minkowski space.

5.4.2 Composition Law and Backreaction

The κ-Poincaré composition law of momenta (eq. (5.4)) is given in embedding
coordinates by

(η ⊕ ζ)0 =
ζ0κ+ ζ1η1

η0 + η2

+
η0(ζ0 + ζ2)

κ
, (5.37)

(η ⊕ ζ)1 =
η1(ζ0 + ζ2)

κ
+ ζ1, (5.38)

(η ⊕ ζ)4 = −ζ0κ+ ζ1η1

η0 + η2

− η0(ζ0 + ζ2)

κ
+

(η0 + η2)(ζ0 + ζ2)

κ
(5.39)

and the backreaction is given by

ξ / η = 2arcsinh

(
κ sinh

(
ξ
2

)√
(η0 + η2)(η0 cosh(ξ) + η1 sinh(ξ) + η2)

)
. (5.40)

In this form it is easy to see that the backreaction is always well-defined, i.e.,
that the argument of the square root is always positive and nonzero for any
momentum in the comoving chart. We have η0 + η2 = κ ep0/κ > 0 and and
η0 cosh(ξ) + η1 sinh(ξ) + η2 = η̃0 + η̃2 = κ ep̃0/κ > 0.

5.4.3 The Dispersion Relation

Recall from chapter 4 and in particular section 4.3 that we found two different
(but equivalent) dispersion relations, differing by a redefinition of mass. One
originating from the mass Casimir of the κ-Poincaré algebra and the other from
the geodesic distance in de Sitter momentum space. We denoted the two masses
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by m and m̃, respectively. Looking at the definition of embedding coordinates,
we quickly see that the latter (eq. (4.32)) is given simply by

m̃ = κ arccosh
(η2

κ

)
, (5.41)

from which we can infer, using eq. (4.33), that

m2 = 2κ(η2 − κ). (5.42)

From these representations of the mass, together with the form of the boosts in
embedding coordinates, which trivially leave η2 invariant, it is a trivial conse-
quence that the mass (whichever one we choose) is indeed invariant under boosts.
It is also clear that a particle is massless if and only if its η2 coordinate is equal
to κ. It is massive if η2 > κ. Particles with η2 < κ are not physical, since this
corresponds to an imaginary mass. This shows again that momentum space is a
proper subspace of dS space, and it makes it easy to visualize this subspace in
Minkowski embedding coordinates, which we already did in fig. 4.1.
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Chapter 6

κ-Poincaré: Multiple Interactions

The backreaction method as outlined in section 5.2.1 ensures that the κ-Poincaré
model is invariant under all finite κ-Poincaré transformations as long as each
particles undergoes at most one interaction. A problem arises, however, when
particles are allowed to undergo multiple interactions. In this chapter we identify
this problem and propose a solution for a large class of scenarios, although there
will remain situations in which invariance is lost. This is the main result of the
research done for this thesis.

6.1 Exposition of the Problem

Consider the situation that a particle with momentum k decays into two particles
of momenta p and q, and that the q particle subsequently decays into two particles
of momenta r and s. The situation is summarized in the diagram in fig. 6.1,
where time flows to the right, as indicated by the arrows (these have nothing
to do with spinors). Since the momentum conservation law is noncommutative
we also need to specify the ‘particle hierarchy’ at each interaction vertex. We
will always use the convention that the order of incoming (outgoing) particles is
from top to bottom in the diagram when one is drawn. Hence the momentum
conservation laws at the two vertices corresponding to the diagram in fig. 6.1
read

k = p⊕ q, q = r ⊕ s, (6.1)

105
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Figure 6.1: Example interaction diagram

respectively. We now focus on the q particle, because it interacts more than
once in its lifetime. At the second vertex, since q is the only incoming particle,
it obviously is to be treated as the first of the incoming particles in this ver-
tex. According to the backreaction method, this means that under a boost of
bare rapidity ξ (recall that the bare rapidity is defined to be the rapidity with
which the first incoming and first outgoing particles transform), the q particle
transforms simply with rapidity ξ. In contrast, at the first vertex the q particle,
according to the vertical order in the diagram, is to be treated as the second
outgoing particle, so it gets a backreaction from the first outgoing particle and
hence it should transform not with rapidity ξ but with ξ / p. The two vertices
contradict one another: since ξ 6= ξ /p, it would look like the two extremes of the
worldline of the particle with momentum q transform differently, which would
make the transformation rule of the worldline ill-defined.

6.2 And a Solution

For a large class of scenarios, the problem outlined above can be solved by an
extension of the backreaction method of section 5.2.1 (which works for individual
vertices) to entire interaction diagrams like the one above. Here we will explain
this procedure. We will start with a couple of simple examples, which are proba-
bly sufficient to get the idea across. In section 6.2.4, a proof is presented that this
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procedure works (i.e., is well-defined and renders the conservation law invariant
under boosts) for at least all tree-level diagrams, as well as for all completely
orderable diagrams, a notion that will be defined later. We will consider only
connected diagram, which, from a physics perspective, corresponds to scenarios
in which all particles are causally connected to each other. Any general diagram
can be pieced together from some collection of connected diagrams, without
causing problems in the transformation behavior.

6.2.1 A First Example

We consider again the diagram in fig. 6.1. As illustrated, the backreaction
method from section 5.2.1 does not work, so what we will do differently is to
allow each of the two vertices 1 and 2 to have a different ‘bare’ rapidity – let us
call them ξ1 and ξ2, respectively – instead of requiring that ξ1 = ξ2 = ξ. Next we
simply apply the conventional backreaction method to each vertex, which yields
a compatibility equation between the two bare rapidities,

ξ2 = ξ1 / p, (6.2)

because q should transform with rapidity ξ2 (according to vertex 2) as well as
with ξ1 / p (according to vertex 1). This compatibility condition replaces the
contradiction ξ = ξ / p that we would have ended up with, had we used the
original backreaction method. Hence if the bare rapidity of vertex 1 is given,
the link between 1 and 2 provided by the q particle uniquely determines the
bare rapidity of vertex 2. And it also works the other way around, since we can
rewrite the compatibility equation as

ξ1 = ξ2 / (	p) (6.3)

by virtue of the fact that the momenta form a group under the composition law
⊕ and the fact that the backreaction / is a right action of this group. Since the
bare rapidity of a vertex is determined uniquely by any of the rapidities of the
particles attached to it, it is enough to specify the rapidity of any of the particles
in the diagram to determine the transformation behavior of any of the other
particles in the diagram. For the present situation we find that the different
momenta transform as follows:
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k → Λξ1(k),
p→ Λξ1(p),
q → Λξ1/ p(q),
r → Λξ1/ p(r),
s→ Λ(ξ1/ p)/ r(s) = Λξ1/ (p⊕r)(s).

Then all boosted momenta are well-defined and the momentum composition
law behaves covariantly under boosts. This method, let us call it the ‘pairwise
method’, of assigning a rapidity to each particle in the diagram is not the only
way to do this, in general. Note that no lines in the present diagram cross each
other (even if we imagine them infinitely extended to the right, for outgoing par-
ticles, or to the left, for incoming particles). When that is the case, we may in
fact interpret the above procedure of determining the rapidities equivalently in
an alternative way, which we will call the ‘total momentum method’:

Alternatively, instead of assigning a bare rapidity to each vertex, ξ1, ξ2, we now
assign only a single bare rapidity ξ to the whole diagram, namely the rapidity with
which the topmost incoming particle transforms1, and that all particles in the en-
tire diagram ‘backreact’ on each other: any given incoming (outgoing) particle
gets a backreaction from the total momentum constituted by all particles above
the considered particle in the diagram, summed in the correct order.

The key thing to note here is that instead of looking at the set of momenta at
each vertex separately, we include in the computation at each vertex the complete
set of momenta of the whole diagram. This is very similar to what happens with
translations if one includes multiple interactions. In that case one has to use,
at each vertex, the composition law governing the total momentum in the entire
diagram (see section 2.2) instead of of the composition law of ‘just’ that vertex.
This parallel between the implementation of translations and boosts suggests
that the universe might be a lot more interconnected than one is usually inclined
to think. In any case, this is true for the κ-Poincaré model.
The second formulation, the total momentum method, works only when particle

1Assuming the diagram contains a finite number of particles, and imagining all particle lines
infinitely extended to the right, for outgoing particles, or to the left, for incoming particles,
there always is a topmost incoming particle, because the lines do not cross, by assumption.
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lines in the diagram do not cross, even if we imagine them infinitely extended
to the right, for outgoing particles, or to the left, for incoming particles. So the
initial procedure is more general. The second formulation is mainly interesting
because it shows very quickly how each particle should transform, and because
it draws a parallel with the translations as just alluded to. In the particular case
of the present diagram it can quickly be verified that the two methods yield the
same result. A more interesting example is provided next.

6.2.2 A Loop Example

As another example we consider the loop diagram diagram in fig. 6.2. Again the
ordering of the particles in each vertex is by convention from top to bottom in
the diagram. Since there are no crossing lines in this case we can use the ‘total
momentum’ method, in addition to the generic ‘pairwise’ method, to find the
rapidities with which each of the particles transforms under a boost. So we will
analyze the diagram twice, using each of the methods, both yielding the same
results.

The Pairwise Method

Let the bare rapidity if vertex i be ξi for each i = 1, 2, 3, 4. With V = 4 vertices
and L = 1 loop we have (V −1)+L = 4 compatibility conditions for the rapidities.
These are found by imposing that the particles that connect the vertices have a
well-defined momentum transformation, and read

ξ2 = ξ1 / p, ξ3 = ξ1, ξ4 = ξ3 / `, ξ2 = ξ4 / `
′. (6.4)

Note that because of the loop, we have two different compatibility equations
involving ξ2! This is a general consequence of loops. So let us first make sure
that the two equations are consistent in this case. Substituting the third equation
into the fourth, the latter equation becomes ξ2 = (ξ3 / `) / `

′ = ξ3 / (`⊕ `′), and
by conservation of momentum at vertex 3, we see that this equation is equivalent
to the first compatibility equation. Therefore the momentum transformation
is well-defined for each particle. Summarizing, the different particles transform



110 CHAPTER 6. κ-POINCARÉ: MULTIPLE INTERACTIONS

Figure 6.2: Example loop diagram
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with the following rapidities, in terms of ξ1.

q → Λξ1(q), (6.5)

p→ Λξ1(p), (6.6)

p′ → Λξ1/ p(p
′) (6.7)

`→ Λξ1(`), (6.8)

`′ → Λξ1/ `(`
′), (6.9)

k → Λξ1/ p(k), (6.10)

k′ → Λξ1/ p/ k(k
′) (6.11)

q′ → Λξ1/ `(q
′). (6.12)

The Total Momentum Method

In this method we work with only a single bare rapidity, ξ and each particle gets
a backreaction from all particles above it in the diagram. For definiteness we
will suppose that vertex 2 happens ‘before’ vertex 32. That means that we get
the following transformations:

q → Λξ(q), (6.13)

p→ Λξ(p), (6.14)

p′ → Λξ/ p(p
′), (6.15)

`→ Λξ(`), (6.16)

`′ → Λξ/ `(`
′), (6.17)

k → Λξ/ p(k) (according to vertex 2) and (6.18)

k → Λξ/ (l⊕l′)(k) (according to vertex 4), (6.19)

k′ → Λξ/(`⊕`′⊕k)(k
′) = Λξ/(p⊕k)(k

′) = Λξ/ p/ k(k
′), (6.20)

q′ →→ Λξ1/ `(q
′). (6.21)

We have two formulations of the transformation of k, because while this parti-
cle travels from vertex 2 to vertex 4, vertex 3 ‘happens in between’. Therefore,

2To do the computation one has to pick an order in time of the different vertices. This is
in the end irrelevant, and all orders compatible with incoming and outgoing particles yield the
same result.
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Figure 6.3: Example interaction diagram with crossing lines, where the pair-
wise method of assigning boost rapidities is applicable, but the total momentum
method is not. Physically diagrams like this represent interaction scenarios where
global momentum conservation is violated.

according to vertex 2, k should transform as if vertex 3 had not occurred yet,
while according to vertex 4 k should transform as if vertex 3 had already hap-
pened. But these two formulations are of course equivalent, by conservation of
momentum at vertex 3. Thus each rapidity is well-defined. We also see that the
result is equivalent to the transformation we found in the previous method if we
identify ξ = ξ1. This example shows how loops can potentially lead to problems,
which is most evident from the pairwise method, because the result of the loop is
that there are two compatibility conditions for ξ2, instead of just one. These two
conditions might not have been consistent with each other. Nevertheless we have
seen that in this particular case they are consistent, so even though loops may
in general lead to problems, there are also loop diagrams that can be handled
perfectly well by our proposed methods.

6.2.3 An Example with Crossing Lines

The last example diagram, fig. 6.3, is one which cannot be drawn without cross-
ing lines. At least not in a way that respects the particle hierarchy at each vertex
and our conventions: time flows to the right and the order of particles is from
top to bottom. One way one might be tempted to draw the diagram without
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Figure 6.4: An interaction diagram that one might obtain by trying to represent
the diagram in fig. 6.3 without crossing lines. The resulting diagram, however,
is physically different from the one in fig. 6.3, because of the noncommutativity
of the κ-Poincaré momentum conservation law.

crossing lines is to draw the p line that emerges from the left vertex below, instead
of above, the q line, as illustrated in fig. 6.4. Then there are indeed no crossing
lines anymore, but the order of the two outgoing particles in the left vertex has
now been changed, which matters because the momentum composition law is
noncommutative. Hence the diagram obtained in this way is really a different
diagram than the original one.

The fact that the diagram in fig. 6.3 cannot be drawn without crossing lines
implies that the total momentum method is not applicable (or at least that we
cannot guarantee that it is). We will illustrate below why this is the case. On
the other hand, the diagram is of tree-level, so the pairwise method will work
perfectly fine. We will also work through this method below.



114 CHAPTER 6. κ-POINCARÉ: MULTIPLE INTERACTIONS

The Pairwise Method

Employing the pairwise method, we start by assigning to each vertex its own bare
rapidity, the left vertex ξ1 and the right vertex ξ2. The compatibility condition
is then provided by the q particle, since it connects the two vertices, and it reads
ξ1 / p = ξ2 / r, so that we can write

ξ2 = ξ1 / (p	 r). (6.22)

We therefore find that the particles transform as follows in terms of the bare
rapidity ξ1,

k → Λξ1(k), (6.23)

p→ Λξ1(p), (6.24)

q → Λξ1/p(q), (6.25)

r → Λξ1/(p	r)(r), (6.26)

s→ Λξ1/(p	r)(s). (6.27)

The Total Momentum Method

Now let us check that the total momentum method does not work in this case,
as a result of the crossing lines. Recall that in this method there is a single bare
rapidity ξ and each particle gets a backreaction from the total momentum con-
stituted by all the particles above the considered particle in the diagram. This
means that k and p get a backreaction from r, and that q gets a backreaction
from r ⊕ p. Identifying ξ1 = ξ / r this leads to the same transformations for k, p
and q as we obtained from the previous method. But let us now consider the
second vertex. Here the p particle is above the r particle, so r gets a backreaction
from p, s also gets a backreaction from p, and q gets a backreaction from p⊕ r.
That means in particular that q transforms with rapidity ξ / (p ⊕ r) according
to the second vertex, whereas according to the first vertex it transformed with
rapidity ξ / (r ⊕ p). The noncommutativity of the κ-Poincaré composition law
therefore leads to the conclusion that the total momentum method does not yield
a well-defined rapidity for the q particle and hence the method cannot be used.
This is a general feature of diagrams with crossing lines. Note that for the same
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reason the transformation behavior of the q particle under translations (see sec-
tion 2.2) is ill-defined as well, so if one were to require translation invariance then
diagrams like this would be forbidden anyway and there would be no problems
with the definition of boosts at all.
Another general feature of diagrams with crossing lines is that they often violate
global momentum conservation. We already encountered this in section 2.2 as
well when discussing the implementation of translations, and here we encounter
it again. The total incoming momentum is r ⊕ k, while the total outgoing mo-
mentum is

p⊕ s = (k 	 q)⊕ s = k 	 q ⊕ r ⊕ q 6= r ⊕ k. (6.28)

The fact that diagrams with crossing lines do not behave covariantly under boosts
and translations and that they violate global momentum conservation arguably
suggest that these crossing-line diagrams might not be allowed in nature.

6.2.4 The General Case

In this section we provide the proof for the general case: for any tree-level di-
agram and for any ordered diagram there is a way to assign a rapidity to each
particle in the diagram in a well-defined way, such that if each particle’s mo-
mentum transforms according to the corresponding rapidity, and the original
momenta satisfy the conservation law in each vertex, then the boosted momenta
satisfy the conservation law in each vertex as well, meaning that the theory is in-
variant under boosts. By tree-level we mean that the diagram contains no loops,
i.e., no pair of vertices is connected by more than one path. And by an ordered
diagram we mean a diagram where lines do not cross, even if we imagine the
relevant lines infinitely extended to either the left (for incoming particles) or the
right (for outgoing particles). With the latter type of diagram there is always
an overall order that can be assigned to the particles in the diagram which is
also consistent with the ordering in each individual vertex, hence the name. We
will focus here only on connected diagrams (i.e., diagrams where each pair of
vertices is connected by at least one path). For any diagram which is not con-
nected can be pieced together, without the problem of conflicting compatibility
equations, from multiple connected diagrams. From a physics point of view this
makes sense as well, as the different connected parts of a general diagram cannot
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causally influence each other.

Beginning our proof, we consider the most general form of a tree level diagram,
which can be described in the following way. Start with an arbitrary vertex; it
has a finite number of incoming particles with momenta p1, p2, . . . , and outgoing
particles with momenta p1, p2, . . . . (Here the indices are placed up or down to
show that a particle is incoming or outgoing.) We assume without loss of gen-
erality that the particles are numbered such that pi appears in the conservation
law as the ith outgoing particle, and similarly for the incoming ones. We assign a
rapidity ξ to this vertex, by which we mean, by definition, that p1 and p1 trans-
form with rapidity ξ. Invariance of the conservation law then determines how
the other particles in the ξ-vertex must transform. Namely, pi and pi need to
transform with rapidities ξ / (p1 ⊕ p2 ⊕ · · · ⊕ pi−1) and ξ / (p1 ⊕ p2 ⊕ · · · ⊕ pi−1),
respectively. Now since we are dealing with a generic tree-level diagram, each pi
that is created in the ξ-vertex might or might not be annihilated again in another
vertex. If this is the case, we assign a bare rapidity ξi to this other vertex, and
we refer to it as the ξi-vertex. Of course this vertex again has a finite number of
incoming and outgoing particles, the momenta of which we denote by pi

1, pi
2, . . .

and pi1, pi2, . . . , respectively. Repeating this procedure, now starting from each
ξi vertex, and so on, we get a description of the whole (connected) diagram. The
particle with momentum pi

jk
`, for instance, is by definition the particle at which

we arrive by starting in the ξ-vertex, following the ith outgoing particle until we
are at the ξi vertex, then following there the jth incoming particle, (opposite its
propagation direction) until we arrive at the ξi

j-vertex, then following there the
kth incoming particle, (opposite its propagation direction) until we arrive at the
ξi
jk-vertex, and then finally picking the `th outgoing particle in that vertex. This

procedure yields a unique description of each particle, by virtue of the fact that,
by assumption, there are no loops present.

Our task is to make sure that each particle in the diagram has a well-defined
boost parameter associated to it, determined by the compatibility conditions.
We consider first the particle pi, which is the ith outgoing particle in the ξ-
vertex. This particle (assuming that it does not fly off to infinity, in which case
there is nothing to check) is also an incoming particle in the ξi vertex, say the
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jth one. Thus, according to the one vertex, pi should transform with rapidity

ξ / (p1 ⊕ p2 ⊕ · · · ⊕ pi−1) , (6.29)

whereas according to the other vertex it should transform with rapidity

ξi /
(
pi

1 ⊕ pi2 ⊕ · · · ⊕ pij−1
)
. (6.30)

For the rapidity to be well-defined, these two expressions should coincide. Using
the fact that ⊕ makes the momentum manifold into a group, and that / is a
right action of this group, we can formulate this requirement by saying that

ξi = ξ /
(
p1 ⊕ p2 ⊕ · · · ⊕ pi−1

)
/	

(
pi1 ⊕ pi2 ⊕ · · · ⊕ pij−1

)
(6.31)

= ξ /
(
p1 ⊕ p2 ⊕ · · · ⊕ pi−1 	

(
pi1 ⊕ pi2 ⊕ · · · ⊕ pij−1

))
. (6.32)

Thus, once ξ is specified, all the ξi are determined in terms of ξ by means of
this formula, and this ensures that the transformation of all the pi particles is
well-defined. A similar argument applies of course to the incoming particles pi of
the ξ-vertex. Hence in this way we can ensure that all particles directly attached
to the ξ-vertex have well-defined transformation behavior.

Having ensured this, we go on to one of the other vertices, one that is directly
linked to ξ. Say we look at the ξi-vertex. Repeating the exact same argument as
the one used for the ξ-vertex, we find that the value of ξi determines the rapidi-
ties of all vertices directly linked to it (that is, ξi

j and ξik for all j, k), by similar
formulas as the ones above for ξ. Notice, however, that, since ξ is directly linked
to ξi, the value of ξi also imposes a certain value of ξ. But it is easily checked
that the way it does this is consistent with how ξ determined ξi in the first place,
so there is no problem here. This then ensures that all particles connected to the
ξi-vertex have well-defined transformation behavior under boosts.

It is clear that we can continue in this way, going through all vertices, first all
direct links of ξ, then all direct links of direct links of ξi, and so on, each time
determining the values of the directly linked rapidities in terms of the rapidity
of the considered vertex, and hence ultimately in terms of the original ξ. And
we may do this without contradicting the rapidities that we had already defined
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in previous steps, because each vertex will only be connected to ξ by a single
possible path (because the diagram is of tree-level, by assumption). Thus we
conclude that by defining the rapidities in this way for the entire diagram, in
terms of ξ, we have ensured that the whole diagram transforms in a well-defined
way under boosts, such that the momentum conservation law at each vertex is
invariant under the boosts. So let us conclude:

With the above implementation of boosts on tree-level diagrams, and with trans-
lations acting in the original way, the κ-Poincaré model, restricted to tree-level
interaction diagrams, is invariant under all finite κ-Poincaré transformations.

Next, the proof for ordered diagrams is simple. We may use the total momentum
method in this case and all we need to check is that a particle that interacts
twice has a well-defined boost rapidity associated to it. Because the diagram
has no crossing lines, there is an overall particle ordering (namely the order as
drawn from top to bottom in the diagram) which is consistent with the order in
each individual vertex. Conservation of the total momentum constituted by all
particles above a given particles in the diagram guarantees that when a particle
is connected to two vertices then the rapidity induced by the first vertex is the
same as the rapidity induced by the second vertex. Hence the total momentum
method always works in this case as well.

Some Technical Remarks

Note that in the tree-level scenario we do not need to assume that the diagram
is finite. If we know the rapidity with which one of the particles transforms, then
we can infer the rapidity needed for all other particles, even if there are infinitely
many. We do need to assume, however, that the number of vertices is countable,
as we have used an induction argument, but from a physics perspective that
is always the case anyway. Also, we have to assume that each vertex has only
finitely many direct links, i.e., only a finite number of particles can partake in
each interaction. But to doubt this would be a bit far fetched as well.
Note also that we could have started the construction of the proof with any vertex
in the diagram, and the rapidity of an any given particle in that vertex. Given
that one rapidity, one is able to determine the bare rapidity of that vertex, and
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consequently the rapidity of each particle in the diagram. So if one knows for
any given single particle how it transforms then that is enough to determine the
transformation behavior of all other particles in the diagram. Therefore one can
define a boosted observer, for instance, by saying that that some given particle
transforms with a given rapidity. Then the rapidities of all other particles in the
diagram are determined uniquely and can be computed explicitly, provided the
momenta are known3.
When using the total momentum method however, we do need to require that
the number of particles present in the diagram at any time is finite, because
otherwise we cannot compute the total momentum, as the total energy would be
infinite (because of the triviality of the zeroth component of the addition law of
momenta).

6.2.5 The Difficulties with Loops

An essential ingredient that we have used in the proof for tree-level diagrams is
that for those diagrams each vertex can be traced back to the original vertex ξ
via one and only one ‘path’. This is the reason that all rapidities are well-defined.
If we allow for loops, however, there will be multiple paths between some pairs
of vertices, and these different paths will in general lead different compatibility
conditions for these pairs of vertices, leading potentially to ill-defined rapidities.
This is the problem we face with loops. For a general loop diagram the method
cannot be guaranteed to work. Nevertheless, in some loop diagrams there is no
problem at all, which is the case, for instance, when the total momentum method
is applicable, as we already saw in the example in section 6.2.2.
Moreover, a lot of loop diagrams for which the described method a priori does
not seem to work, can be modified by changing the order of the particles in a
vertex in such a way that the method does work. Note that this changes the
momentum conservation laws, by nonassociativity, but nature might well have
decided that of all the possible particle orderings in the vertices only those that
behave covariantly are allowed. This possibility is reinforced by the observation

3Of course, one needs to know the vertex structure in order to do this. Conversely, if one
does not know the vertex structure, one might compare results between two relatively boosted
observers to experimentally determine what the vertex structure must have been in a given
process.
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that a lot of the non-covariant diagrams also violate global momentum conser-
vation. The most viable explanation for the presence of non-covariant diagrams
might therefore be that they are simply excluded from nature. Assuming this is
indeed the case, the κ-Poincaré model becomes a completely relativistic theory.



Chapter 7

An Alternative Conservation Law

In the previous chapter we extended the κ-Poincaré model to a κ-Poincaré invari-
ant theory that can deal with (a certain class of) multi-vertex diagrams. Already
in chapter 5, however, we found that boosts were not compatible with the Rel-
ative Locality Framework (RLF) when interactions are taken into account. The
reason for this is in essence the backreaction, which originates from the momen-
tum composition law. But interestingly, there is an alternative candidate for the
composition law [28], which is κ-Poincaré invariant without requiring a backreac-
tion, so with this alternative composition law all particles conveniently transform
with the same boost rapidity1. In this chapter we discuss the model that arises if
we abandon the original κ-Poincaré composition law in favor of this alternative
one, while leaving the rest of the model unchanged. Although this ensures that
the boosts are RLF symmetries, translation are not, because momentum space
is now not a group under the new composition law, a fact which we often used
in proving the well-definition of the RLF translations in section 2.2.

7.1 The Conservation Law

In [28] the authors derive a κ-Poincaré invariant composition law on de Sitter
(momentum) space. They use Minkowski embedding coordinates, in which the
the boosts have a much simpler form, namely just that of a Minkowski boost, as

1That is, requiring that the alternative composition law indeed behaves covariantly.
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we discussed in section 5.4. Finding a κ-Poincaré invariant composition law then
amounts to finding a composition law that is invariant under this Minkowski
boost, but with one extra requirement: if we are working on Minkowski space we
need to make sure that the composition of two momenta is again a momentum,
that is, that the composition of two points in the subspace of physical momenta
is again in this subspace. This subspace consists of those points (η0, η1, η2) in
Minkowski space that satisfy η0 + η2 ≥ κ (this is where the comoving dS coor-
dinates are defined and energies are nonnegative) and η2 > 0 (this corresponds
to particles of real mass), see figure 7.1. And, lastly, in our case it is impor-
tant to check if the composition law has the correct κ → ∞ limit in comoving
coordinates, but recall that this limit does not make much sense in embedding
coordinates, so we first have to transform back to comoving coordinates before
we take this limit.

In 1+1 dimension dS space, the composition law derived in [28] reads, in em-
bedding coordinates,

(η � ζ)0 = η0 + ζ0 − η0
ζ1(η1(κ+ ζ2) + ζ1(κ+ η2))− ζ0(η0(κ+ ζ2) + ζ0(κ+ η2))

κ(κ+ η2)(κ+ ζ2)
(7.1)

(η � ζ)1 = η1 + ζ1 − η1
ζ1(η1(κ+ ζ2) + ζ1(κ+ η2))− ζ0(η0(κ+ ζ2) + ζ0(κ+ η2))

κ(κ+ η2)(κ+ ζ2)
(7.2)

(η � ζ)2 =
2η2ζ2 − ηµηµ

κ
=
η0ζ0 − η1ζ1 + η2ζ2

κ
. (7.3)

We have used the symbol � to distinguish it from the κ-Poincaré composition
law ⊕.
We state here without proof that the κ-Poincaré momentum space is indeed
closed under the composition law �, just as it was under ⊕. Explicitly, this
means that for all pairs of triplets (η0, η1, η2) ∈ R3 satisfying the equations −η2

0 +
η2

1 + η2
2 = κ2, η2 ≥ κ and η0 + η2 ≥ κ, the � sum of the pair also satisfies these

equations. A similar statement was provided in [28], but it was not discussed
there that real masses are also preserved by the conservation law.
Since the composition law (7.1),(7.2),(7.3) is well-defined as a composition law
on our momentum space, we may express it in comoving coordinates. It then
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Figure 7.1: κ-Poincaré momentum space in 1+1 dimensions, embedded in 2+1
dimensional Minkowski space. The hyperboloid consisting of the green and yellow
patches represents the entire dS space. The part of dS space above the diagonal
blue (η0 + η2 = κ) plane is the part of dS space which is described by comoving
coordinates (p0, p1). And the part of this which, additionally, lies in front of the
vertical blue (η2 = 0) plane corresponds to momenta with a real mass; this part,
the actual κ-Poincaré momentum space, is colored green.
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has the form

(p� q)0 = κ log

(
e
p0+q0
κ

(
κ2 + ep0/κ (κ2 − p1q1)

)2 − κ2p2
1e

3p0−q0
κ

κ4 + 2κ4ep0/κ + κ2e
2p0
κ (κ− p1)(κ+ p1)

)
, (7.4)

(p� q)1 =
κ2p1e

p0/κ
(
κ2 + κ2ep0/κ + p2

1

(
−e

2p0
κ

))
e
p0+2q0

κ (κ2 + ep0/κ (κ2 − p1q1))
2 − κ2p2

1e
3p0
κ

(7.5)

+
e

2q0
κ

(
p1e

2p0
κ (κ2 − p1q1) + κ2q1e

p0/κ + κ2q1

) (
κ2 + ep0/κ (κ2 − p1q1)

)
e
p0+2q0

κ (κ2 + ep0/κ (κ2 − p1q1))
2 − κ2p2

1e
3p0
κ

,

(7.6)

and expresses a deformed momentum conservation law, which satisfies the crucial
property that it is invariant under the κ-Poincaré boosts (4.21), (4.22) in the
ordinary sense, i.e., the implication

p� q = k ⇒ Λξ(p) � Λξ(q) = Λξ(k) (7.7)

holds for any rapidity ξ and there is no need for a backreaction, in contrast to
the κ-Poincaré conservation law ⊕. In this form it can also be checked that
the Special Relativistic limit is the correct one. Interestingly the symmetrized
(commutative) version of the addition law, which reads

(p� q)0 = p0 + q0 −
p1q1

κ
+

1

4κ2
(p1− q1)(p1q0− p0q1), (7.8)

(p� q)1 = p1 + q1 −
p0q1 + p1q0

κ
+

1

4κ2

(
3p02q1 + p0q0(p1 + q1)

)
(7.9)

+
1

4κ2

(
p1
(
2q1(p1 + q1) + 3q02

))
, (7.10)

to second order in 1/κ, coincides to first order with the commutative composition
laws found in [23] (equations 78 and 84), but not to second order.

7.1.1 Nonassociativity of the Composition Law

The fact that the composition law is nonassociative leads to an ambiguity in the
model, in addition to the ambiguity due to noncommutativity that by now we
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have gotten used to. One possibility is to always compose momenta from left
to right, i.e., start with the the left most momentum, add to it the momentum
to the right of it, then add to that the momentum to the right of the first
two, one, and so on. This says that the ‘nonassociativity order’ is the same as
the ‘noncommutativity order’. But instead it might also be the case that the
nonassociativity order is completely independent from the noncommutativity
order. We will not comment on this issue any further.

7.2 Translations

The translations that were introduced in section 2.2 using the total momentum
at each vertex for the purpose of being RLF symmetries, do not work as well
together with the momentum conservation law of this chapter. The reason is
basically that, in contrast to ⊕, � does not make momentum space into a group.
For instance in the diagram below, the conservation law at vertex 4 is `′ � k =
q′. Because of the lack of inverse elements, we cannot guarantee that this is
equivalent to the ‘total momentum expression’ (l�(`′�k))�k′ = (l�q′)�k′. And
even if it was, then, because of nonassociativity, it would be not be equivalent to,
for instance, ((l� `′)�k)�k′ = (l�q′)�k′, in which a different nonassociativity
order is used in the composition. Clearly this will become a problem in a lot of
diagrams, and it means that we cannot formulate all vertex conservation laws
in terms of a total momentum. This, in turn, means that we cannot define
translations in a well-defined way such that they are symmetry of the Relative
Locality Framework. Hence the best option at this point is to just use our good
old original κ-Poincaré translations xµ → xµ + aµ. Although those are not full
RLF symmetries either, because they do not leave the RLF interaction equation
invariant, they are well-defined symmetries of the non-interacting theory as well
as of the momentum space description of interactions (that is, the momentum
conservation law).



126 CHAPTER 7. AN ALTERNATIVE CONSERVATION LAW

7.3 κ-Poincaré Boosts Are RLF Symmetries

Since using the total momentum at each vertex in the conservation law does
not work in favor of the translations anymore, it is more natural to choose the
original formulation K =

(
�i pi

)
−
(
�j qj

)
= 0 of the conservation law, where

the pi and qj are simply the incoming and outgoing particles, respectively, at the
given vertex. This form of the conservation law is compatible with the boosts
(in the sense that boosts are now a symmetry of the whole RLF). Let us prove
this. We denote a boost of a particle with momentum p by

p→ p̃, xµ → xν
∂pν
∂p̃µ

(7.11)
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In order to make this a symmetry of the whole relative locality framework, we
showed in section 5.3.2 that zµ needs to transform as

z → z̃ = z
∂K

∂p̃

∂p̃

∂p

(
∂K̃

∂p

)−1

= z
∂K

∂p̃

(
∂K̃

∂p̃

)−1

, (7.12)

written in matrix notation2. The second equality is due to the fact that there is no
backreaction; the boosted composition law depends only on the original momenta
p through the boosted momentum p̃ and not the other boosted momenta. This is
the crucial difference with the original κ-Poincaré model, where the backreaction
invalidates this statement.
Note that for a boost to be a well-defined transformation of the triple (z, x, p),
the conservation law K must satisfy the requirement that (7.12) is independent
of the chosen momentum p of the vertex. To see that this is indeed true, write
Kp = �i pi and Kq = �j qj, so that K = Kp −Kq. Now, as above, we have

K̃p = Λξ (Kp) and K̃q = Λξ (Kq), and for any pi we can write

∂K

∂p̃i

(
∂K̃

∂p̃i

)−1

=
∂Kp

∂p̃i

(
∂K̃p

∂p̃i

)−1

=
∂Kp

∂K̃p

∂K̃p

∂p̃i

(
∂K̃p

∂p̃i

)−1

=
∂Kp

∂K̃p

=
∂p

∂p̃

∣∣∣∣
p̃=K̃p

,

(7.14)

which indeed is the same for all pi. Similarly, for any qi we can write

∂K

∂q̃i

(
∂K̃

∂q̃i

)−1

= −∂Kq

∂q̃i

(
−∂K̃q

∂q̃i

)−1

=
∂Kq

∂K̃q

∂K̃q

∂q̃i

(
∂K̃q

∂q̃i

)−1

=
∂Kq

∂K̃q

=
∂p

∂p̃

∣∣∣∣
p̃=K̃q

,

(7.15)

which does not depend on the chosen qi either. And the two expressions above
are also equal to each other by virtue of the fact that conservation of momentum

2With the convention that the second index of the Jacobian matrix labels the components
of the object below the denominator, i.e.,(

∂K

∂p

)
µ

ν

=
∂Kµ

∂pν
(7.13)
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is invariant under boosts, K̃ = K̃p − K̃q = 0.

Hence with these definitions, the κ-Poincaré boosts are well-defined symmetry of
the whole Relative Locality framework.



Chapter 8

Discussion and Outlook

In this thesis we have described how the κ-Poincaré model can be extended in
such a way that it can deal with particles that undergo multiple interactions
during their lifetimes. With our proposed generalized implementation of boosts,
a large class of interaction diagrams with multiple vertices now behaves covari-
antly under the κ-Poincaré transformation group, at least when translations are
also implemented in the correct way. Still not all interaction diagrams behave
covariantly, however, and it is still an unanswered question how to interpret this.
One possibility is that nature only allows processes that do in fact behave co-
variantly; another is that the κ-Poincaré transformations are not symmetries of
nature after all. And, of course, there is also the possibility that the κ-Poincaré
model is simply not realized in nature. Future research in quantum gravity might
shed light on this question. We hope that the κ-Poincaré model can someday
be derived as the ~ → 0, G → 0 limit of some fundamental theory of quantum
gravity.
Also we have compared the κ-Poincaré model to the de Sitter momentum space
model in the Relative Locality framework (RLF). We have seen that for free
particles the two models coincide, up to an irrelevant redefinition of mass. For
interacting particles, however, the RLF provides one additional equation – the
so-called interaction equation – in comparison to the κ-Poincaré model, which
relates the endpoints of interacting worldlines in spacetime, and we demonstrated
that this equation cannot be invariant under κ-Poincaré boosts. Hence the κ-
Poincaré model is not compatible in a covariant way with the dS RLF model.
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This is an important observation, for it means that we need to look for an al-
ternative interaction equation. An alternative equation that tells us how the
endpoints of worldlines behave in interactions. In Special Relativity all world-
lines end in a single point, and in the RLF there is the modified interaction
equation, but neither of those behave covariantly in the κ-Poincaré model. One
might say therefore that the κ-Poincaré interactions are at this point defined
mostly on momentum space, and the spacetime interpretation is not completely
understood yet. We leave this issue to future research, but in appendix B we
make some suggestions.
Another point of interest for future research is the question if it is possible in
the κ-Poincaré model to redefine the physical momenta of particles in such a
way that the composition law of momenta becomes trivial. This idea is inspired
by the difference in definition of momentum between Newtonian Mechanics and
Special Relativity. In the first case the momentum of a particle is given simply
by mv, with m the mass of the particle and v its velocity. In the latter case,
however, one defines the momentum as γmv, where the Newtonian momentum
is multiplied by the γ factor. As a result of this redefinition the momentum com-
position law in Special Relativity becomes trivial. Perhaps there exists another
redefinition of momentum such that the κ-Poincaré composition law becomes
trivial as well. A brief discussion on this topic is provided in appendix C.
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Appendix A

Geodesics from a Hamiltonian
Flow

In this appendix we discuss the coincidence of the results from 1.3.1 and 1.3.2.

Suppose we are given an arbitrary (pseudo-) Riemannian manifold (M, g). There
is a standard way of obtaining the geodesics on M as the trajectories generated
by a Hamiltonian. The phase space will be the cotangent bundle T ∗M with the
standard Poisson bracket. As Hamiltonian we take H = 1

2
gµνpµpν . We will see

that the trajectories generated by this Hamiltonian are precisely the geodesics
on M .

Massive Particles

From a physics point of view, when dealing with massive particles it is often
be more convenient to take a slightly different Hamiltonian, H = 1

2m
gµνpµpν ,

because then pµ will be the physical momentum. This Hamiltonian yields the
equations

ẍρ + Γρµν ẋ
µẋν = 0, pµ = mẋµ, (A.1)

which we will prove in a moment. The first of these we recognize as the geodesic
equation on spacetime, and the second one shows that pµ is indeed the physical
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momentum. Well, there is actually another thing we must require in order for p
to be the physical momentum. Namely, we need to make sure that the tangent
vector to the curve is properly normalized, i.e., gµνp

µpν = m2, or equivalently,
gµν ẋ

µẋν = 1 (for massive particles). So Hamilton’s equations together with the
dispersion relation (i.e., normalization) determine uniquely a geodesic and its
physical momentum.
The derivation is as follows. Hamilton’s equations are

ẋρ = {xρ, H} =
1

m
gρνpν

(
=

1

m
pρ
)
, (A.2)

ṗσ = {pσ, H} = − 1

2m
pµpν∂σg

µν . (A.3)

Taking another derivative of the first equation, we obtain

ẍρ =
1

m
∂αg

ρν ẋαpν +
1

m
gρν ṗν =

1

m
∂αg

ρν ẋαpν +
1

m
gρν
(
− 1

2m
pµpα∂nug

µα

)
(A.4)

=
1

m

(
−gρρ′gνν′∂αgρ′ν′

)
ẋαpν −

1

2m2
gρνpµpα

(
−gµµ′gαα′∂νgµ′α′

)
(A.5)

= −gρρ′∂αgρ′ν′ẋαẋν
′
+

1

2
gρν∂νgµ′α′ẋ

µ′ẋα
′

(A.6)

= −1

2
gρσ (2∂µgνσ − ∂σgµν) ẋµẋν (A.7)

= −1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) ẋµẋν (A.8)

= −Γρµν ẋ
µẋν . (A.9)

Here we have used that

∂σg
µν = −gµµ′gνν′∂σgµ′ν′ (A.10)

in going to the second line.
Note that had we used H = 1

2
gµνpµpν instead of H = 1

2m
gµνpµpν , we would have

gotten the set of the equations

ẍρ + Γρµν ẋ
µẋν = 0, pµ = ẋµ, (A.11)
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which, analogously, we must complete by adding the normalization condition
gµν ẋ

µẋν = 1. In this alternative setting, the physics is identical, but pµ is not the
physical momentum; it is the four-velocity of the particle. To get the physical
momentum we must multiply by the mass m.

Massless Particles

For massless particles we clearly cannot use the Hamiltonian H = 1
2m
gµνpµpν ,

since we cannot divide by m = 0. Hence we will use the original one, H =
1
2
gµνpµpν . As we have seen above, this leads to Hamilton’s equations

ẍρ + Γρµν ẋ
µẋν = 0, pµ = ẋµ, (A.12)

which we supplement in this case by the normalization condition gµν ẋ
µẋν =

0 (which makes sure the particle is massless, i.e., travels on a null geodesic).
Here again, pµ is not the physical momentum. So how do we get the physical
momentum? We cannot just multiply by m as above, since then the momentum
would vanish. The definition of the momentum of a massless particle in General
Relativity is pµph = dxµ/dλ̃, where λ̃ is a certain affine parameter. In the case of

massive particles one takes λ̃ = τ , the proper time, but for massless particles this
does not work since τ = 0. Instead, λ̃ has to be determined experimentally in
each separate case. The only thing we know is that, since λ̃ is an affine parameter,
it has to be given as λ̃ = aλ + b (for some a 6= 0, b) in terms of the (arbitrary)
original affine parameter λ. Then pµph = dxµ/dλ̃ = (dxµ/dλ)(dλ/dλ̃) = ẋµ/a and
hence the normalization condition is equivalent to

gµνp
µ
php

ν
ph = 0. (A.13)

Now the interesting fact that makes the ‘symmetry approach’ of the de Sit-
ter spacetime (section 1.3.2) work just as the above Hamiltonian approach and
hence as the conventional General Relativity approach (section 1.3.1), is that
the phase space representation of quadratic Casimir (1.43) of the de Sitter alge-
bra (which we used as Hamiltonian in 1.3.2), is proportional to the Hamiltonian
1
2
gµνpµpν that generates geodesics according to the discussion above, which is

easily checked. This is true in 1+1 dimensions it turns out that it holds other
dimensions as well.
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Appendix B

Alternatives to the RLF
boundary equation

B.1 The Missing Link

As we have seen, the κ-Poincaré model is not completely covariantly compatible
with Relative Locality framework (RLR) because of the fact that the ‘interaction
equation’ of the RLF,

xµI (λ0) = zν
∂Kν

∂pIµ
, (B.1)

is not invariant under boosts (in the case of the κ-Poincaré composition law) or
under translations (in the case of the alternative composition law of chapter 7.
Hence something is still missing from the κ-Poincaré model, namely a criterion
that tells us if a given combination of particles, in a given spacetime configura-
tion, can interact, i.e., form a vertex. In Special Relativity the criterion is simply
that the worldlines meet in a single point zµ; in the Relative Locality framework
the criterion is that the endpoints of the worldlines are given by the interaction
equation above for some ‘interaction coordinate’ zµ. So when can particles inter-
act in the κ-Poincaré model (with either composition law)? In the best scenario
one would be able to find an alternative such equation for the κ-Poincaré model.
In the following we describe a possible route to obtaining such an equation. We

137



138 APPENDIX B. ALTERNATIVES TO THE RLF BOUNDARY EQN

leave it for further study to find explicit solutions. (Although we actually do ob-
tain an explicit invariant equation in this way, it turns out that is not physically
acceptable, as we will see.)

B.2 Finding an Alternative Criterion

B.2.1 Requirements

First we need to think carefully what it is that we actually want out of the
criterion.

1. Most importantly, given the (supposed) endpoints of the worldlines of a
set of incoming particles, the criterion should tell us whether that set of
particles can form a vertex1, allowing for a (possibly nonlocal) interaction.

2. Secondly, it must also determine the starting points of the worldlines of the
resulting particles.

3. We would also like to enforce the (weak) principle of relative locality. This
does not mean that we need the usual equation from the Relative Locality
framework, but it means that we require that there always exists an (iner-
tial) observer for which a given interaction vertex is local, i.e., all particles
interact in a single point. We have called this the weak principle of relative
locality; the strong principle of relative locality then states that the weak
principle holds and, additionally, that if an (inertial) observer is local to
one of the interacting particle’s endpoints, then it must be local to all other
interacting particle endpoints and hence local to the interaction vertex.

4. (Optional.) The strong principle of relative locality should hold.

Note that the requirements (3) and (4) tacitly assume that the theory is invariant
under a well-defined set of transformations that relate (inertial) observers. Note
also that it is very convenient, in the light of these requirements, to specify an

1Note that a vertex here does not mean that the worldlines must actually meet. The xµ(λ0)
of the Relative Locality framework do not meet in general either.
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interaction using a parameter zµ, so that if the endpoint of the worldline of one
particle is known, we will be able to determine zµ, and from there we will be
able to determine the allowed endpoints for the other particles. The criteria for
an interaction in Special Relativity trivially satisfies all four requirements. The
RLF does so if and only if (∂K /∂p) is an invertible matrix (assuming, of course,
invariance under a set of observer-relating symmetry transformations).

B.2.2 Derivation

A simple ansatz for the criterion is the equation2

xµ(λ0) = zν T (p)ν
µ, (B.2)

for some interaction coordinate zµ and some matrix (not necessarily a tensor)
T (p)ν

µ that may depend on the momentum p of the particle. This ansatz satisfies
all of the requirements outlined above if and only if T (p) is invertible. Given this
ansatz it is easy to derive the requirement that T needs to satisfy, which we will
now do. (From now on we will omit the λ0.) It is easy to see that for any T
this equation can be made invariant under translations zµ → zµ + aµ, by simply
defining the translation behavior of the xµ in a suitable way. Hence here we will
focus on boosts. The requirement that the criterion is invariant under boosts
can be written as

z̃ν T (p̃)ν
µ = x̃µ = xα

∂pα
∂p̃µ

= zν T (p)ν
α∂pα
∂p̃µ

(B.3)

which is equivalent (assuming that T (p)ν
µ, as a matrix, is invertible, which we

may do because it has to be invertible in order to satisfy our requirements) to
the following transformation rule for zµ, written in matrix notation,

z̃ = z T (p)
∂p

∂p̃
T (p̃)−1. (B.4)

The required condition on T follows from the requirement that this transfor-
mation rule be well-defined. Note that if z is the interaction coordinate corre-
sponding to a vertex in which (possibly among others) the momenta p and q
participate, then the same logic yields the transformation

2Note that the RLF interaction equation is not of this form because in that case T does not
only depend on p but on all momenta in the vertex.
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z̃ = z T (q)
∂q

∂q̃
T (q̃)−1. (B.5)

Since there is only one zµ that corresponds to this vertex, the two expressions
for z̃ must coincide. The required condition on T is hence that

T (p)
∂p

∂p̃
T (p̃)−1 is independent of p. (B.6)

We now would like to find matrices T (p) that satisfy this condition.
A general class of solutions is given by T (p)ν

µ = ∂φν
∂pµ

, where φ is any RN -valued

function (in N dimensions) on momentum space with constant, linear transfor-
mation behavior under boosts, i.e., φ̃µ = Aµ

νφν with A a constant matrix. (Here
φ̃ = φ(p̃).) In this case

T̃ =
∂φ̃

∂p̃
=
∂φ̃

∂p

∂p

∂p̃
(B.7)

and hence we see that

T (p)
∂p

∂p̃
T (p̃)−1 =

∂φ

∂p

∂p

∂p̃

(
∂φ̃

∂p̃

)−1

=
∂φ

∂φ̃

∂φ̃

∂p

∂p

∂p̃

(
∂φ̃

∂p

∂p

∂p̃

)−1

=
∂φ

∂φ̃
= A−1.

(B.8)

which is independent of p and hence solves our problem. In particular, if φ is an
invariant, it will do the job. Now the first candidate for φ that comes to mind
in the case of the κ-Poincaré model is of course a Casimir. The only problem
is that we need φ to have N components, with N the dimension of momentum
space/spacetime, whereas the Casimir C has only one. So in 1+1 dimensions,
one invariant is not enough. One possibility is to define φµ(p) = C(p) for each µ,
but this leads to the issue that the matrix T has rank one, so it does not satisfy
our requirements. (And it also means that the endpoint of a particle with given
momentum p can lie only on a one-dimensional subspace of Minkowski space,
which is not what we want.) To find, for the case of 1+1 dimensions, the second
component of φ, we might try to find a second function, besides the Casimir,
which is invariant under boosts. We leave this for further study.



Appendix C

Redefinition of Physical
Momentum

An alternative to looking for a κ-deformed momentum addition law when go-
ing from the κ = ∞ limiting case (i.e., Special Relativity) to finite κ is to take
the same approach as when going from Galilean physics to Special Relativistic
physics, namely redefining the physical momenta1 precisely such that the mo-
mentum addition law is trivial. With the κ-Poincaré law of the previous section
we can achieve this, to first order in 1/κ, by for instance defining the physical
momenta as

pph
0 = p0 +

p2
1

2κ
, pph

1 = p1 +
p0p1

κ
. (C.1)

In these coordinates, the momentum conservation law becomes trivial,

pph ⊕ qph = pph + qph, (C.2)

and moreover, the κ-Poincaré dispersion relation becomes trivial in terms of the
physical momenta as well:

m2 = (pph
0 )2 − (pph

1 )2 = ηµνpph
µ p

ph
ν , (C.3)

1Namely, p→ γp
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and even the momentum space metric becomes the trivial Minkowski one

gµν(p
ph) = ηµν . (C.4)

What’s more, the κ-Poincaré boosts are just the standard Minkowski boost in
these coordinates.

The reason for all of this is that it turns out that actually the so defined phys-
ical momenta correspond, to first order in 1/κ, to two of the three Minkowski
embedding coordinates of momentum space. And we already knew that every-
thing (well, almost everything) was trivial in that description. The difference,
however, is that we now interpret the change of coordinates as a change of chart
on our momentum manifold, instead of as an embedding in a higher dimensional
space. To first order in 1/κ this is clearly possible, as the coordinate change given
above is invertible to this order. But it might be the case that this first order
transformation is extendable to a diffeomorphism to all orders in ξ, in which case
at some point (i.e., at some order) it would stop resembling the embedding in
Minkowski space, but it might still make the equations trivial.
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