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Introduction
The κ-Poincaré model [2] is a Hopf algebra-based deformation of
Special Relativity that features a modified dispersion relation, modified
momentum conservation law, and relative locality effects. Until
recently, the covariance of the model was understood only partly [2, 3].
Here we present our result [1] that the Hopf algebra structure can be
used to lift all symmetries to the multi-particle phase space in a
non-trivial way, leading to a covariant theory that describes arbitrarily
many interacting particles.

The κ-Poincaré Hopf Algebra
In the bicrossproduct basis of the (1+ 1)-dimensional κ-Poincaré Hopf
algebra the generators associated to spacetime translations, P0, P1,
and boosts, N , satisfy the following algebra and coalgebra

[P0, P1] = 0 , [N , P0] = P1 , [N , P1] =
κ

2

(
1− e−2P0/κ

)
−

1
2κ

P2
1 ,

1(P0) = P0 ⊗ 1+ 1⊗ P0 , 1(P1) = P1 ⊗ 1+ e−P0/κ ⊗ P1 ,

1(N ) = N ⊗ 1+ e−P0/κ ⊗ N .

The parameter κ, with dimensions of a momentum, governs the
deformation with respect to the classical Poincaré algebra, which is
recovered in the κ−1

→ 0 limit. Because of the connection to quantum
gravity research, the parameter κ is expected to be roughly of the
order of the Planck scale E p ' 1028 eV.
To obtain a free-particle model that is invariant under the imposed
symmetry algebra, the generators P0, P1, N are represented as
functions on phase space and the Casimir of the algebra,
C = 4κ2 sinh2 ( p0

2κ

)
− (p1)

2ep0/κ , is used both as dispersion relation
C = m2 and as Hamiltonian. With this setup, both the dynamics and
the dispersion relation are automatically invariant under
transformations generated by Pµ and N , and in the limit κ−1

→ 0
Special Relativity is recovered.

Covariance at an Interaction Vertex
The coproduct 1 induces a non-trivial momentum conservation law
p = q ⊕ k in an interaction p→ q + k, namely [2]

(q ⊕ k)µ ≡ (1(Pµ))(q, k) i.e.,

{
(q ⊕ k)0 = q0 + k0 ,

(q ⊕ k)1 = q1 + e−q0/κk1 .

Covariance requires that the conservation law have the same form in
any inertial frame. In particular, boosts must leave the conservation
law invariant. However, the (infinitesimal) action of a boost of rapidity ξ
on a particle’s momentum, given by N ξ

F p = p + ξ {N , p}, satisfies [2]

p = q ⊕ k ⇒ N ξ
F p = (N ξ

F q)⊕ (N ξGq
F k), (1)

where the rapidity acting on the second outgoing particle receives a
backreaction ξ G q = e−q0/κξ +O(ξ2) from the first outgoing momentum
q. Thus, the requirement for covariance demands a non-trivial
implementation of boosts on multi-particle phase space.

Generators Lifted to Multi-Particle Phase Space
As (q ⊕ k)µ is interpreted as the total momentum of the 2-particle
system after the interaction, it is natural to interpret it also as the
generator of translations, acting on 2-particle phase space (see also
[3]). From this point of view, 1 also induces a total boost generator on
2-particle phase space:

Nq⊕k ≡ (1N )(q, k) = Nq + e−q0/κNk,

Nq and Nk being the single-particle boosts corresponding to q and k.
Eq. (1) can then be written in a way that makes covariance manifest:

p = q ⊕ k ⇒ N ξ
p F p = (N ξ

q⊕k F q)⊕ (N ξ
q⊕k F k).

In general the total boost generator is given by the (ordered)
1-induced sum of the individual boost generators of all causally
connected particles present at a given instant. E.g. for the process
p→ q + k followed by k → r + s the total boost generator, after both
interactions, reads N = Nq + e−q0/κNr + e−(q0+r0)/κNs .

The conservation law is only one aspect of the model. However [1]:

When symmetries are implemented via the Hopf algebra-induced
lift, all aspects of the κ-Poincaré model behave covariantly.

Conclusion and Discussion
In the κ-Poincaré model the underlying Hopf algebra structure provides
a way, via the coproduct 1, to lift symmetry transformations from the
1-particle phase space to any relevant multi-particle phase space in
such a way that the interacting theory remains covariant. This raises
the question: to what extend is this result particular to κ-Poincaré and
to what extend is it a general consequence of the underlying Hopf
algebra structure?
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