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Abstract

Loop Quantum Cosmology (LQC) has been successful in quantizing various cosmological
models by applying the ideas and techniques of Loop Quantum Gravity (LQG) to those models.
The simplest one is the flat Friedmann-Robertson-Walker (FRW) model with a vanishing cos-
mological constant, coupled to a mass-less scalar field. When this model is quantized in LQC
one obtains a consistent quantum model that replaces the Big Bang with a quantum bounce,
resolving the singularity. From this quantum model, an effective Hamiltonian has been derived
that describes the expectation values of the quantum operators classically. One can identify
functions on the classical phase space that form an su(1,1) Poisson algebra, and the effective
(internal) Hamiltonian is precisely an element of this algebra. This provides us with the pos-
sibility to deform this algebra and thereby deform the Hamiltonian and the dynamics in the
model. Guided by the fact that in three-dimensional LQG a deformation of the gauge group
SU(2) can be used to introduce a cosmological constant in the theory, we investigate in this
thesis the possibility that in the FRW-model under consideration a deformation of the su(1,1)
structure can be used to introduce the cosmological constant there.
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1 Introduction

Gravity is described excellently by Einstein’s theory of General Relativity (GR). It seems, how-
ever, that reality ought to be described in a quantum mechanical way, as is the case in the standard
model for the other forces of nature. The scale at which gravity is significant is, of course, much larger
than the scale at which these other forces are at play; and we do not expect measurable quantum
effects to be present at those large scales. However, when the theory is used to describe cosmological
models, we encounter events in which quantum effects could become significant. The Big Bang,
for instance, is such an event. Here the volume of the universe vanishes entirely and there really
is no well-defined notion of space anymore. Moreover, quantities like the universe’s energy density
diverge. In these conditions we expect that quantum effects should become (hugely) significant, and
therefore we should be careful trusting the predictions of GR around these events. To find out what
really happens there we will need a quantum theory of gravity; a theory that describes gravity -
or the geometry of spacetime - in a discrete way, using the framework of quantum mechanics. A
promising candidate for such a theory is Loop Quantum Gravity (LQG) [1]. One of the important
features of LQG is that it is background independent and non-perturbative, i.e. the metric is really
treated as the field variable1 and is quantized, instead of only its perturbations. Although LQG is
not complete at present, it has succeeded in giving a consistent description of a kinematical Hilbert
space corresponding to GR.
The ideas and techniques of LQG can also be applied to particular cosmological models, rather then
to full GR, and this area of research is known as Loop Quantum Cosmology (LQC). In this way,
several of these models have already been quantized successfully. A great achievement of LQC is that
it is able to resolve the singularities, like the Big Bang, that are present in the classical models. The
cosmological model that will be discussed in this thesis is the Friedmann-Robertson-Walker (FRW)
model that is spatially flat (k = 0) and has a vanishing cosmological constant (Λ = 0), coupled
to a mass-less scalar field. The classical solutions to this model show either a Big Bang singular-
ity or a Big Crunch singularity, but when the model is quantized in LQC these are replaced by a
Quantum Bounce as the universe reaches a non-vanishing minimum volume2 (expectation value).
This result has been obtained for generic semi-classical quantum states [2, 3, 4], i.e. states that are
highly peaked on the classical trajectory far away from the bounce. And, of course, it is extremely
unlikely that the quantum state of the universe would not be semi-classical, for then we would not
experience the universe as we do. Therefore the quantum bounce is a profound and general result of
LQC’s description of this model. The model is sometimes called solvable Loop Quantum Cosmology
(sLQC), for it is solvable analytically [5].
For semi-classical states, the dynamics of the expectation values of the quantum operators in the
model can be described very accurately by making only a slight adjustment on the phase space of
the classical model. This adjustment and its results are called the effective dynamics and it is valid
for the FRW-model that is the subject of this thesis as well as for the analogous FRW-models in
which either the spatial curvature is nonzero or the cosmological constant is nonzero. One can
then identify functions on the classical phase space that form an su(1,1) Poisson algebra, and for
the (k = 0, Λ = 0) model, the (internal) Hamiltonian happens to be precisely an element of this

1Actually, the variables that are quantized are Holonomies and Fluxes, but these contain the same information as
is contained in the metric.

2It would be more accurate to say that it is a representative cell in the universe that reaches this minimum volume,
instead of the universe itself, for the volume of the whole universe can be infinite, depending on its topology. Yet,
due to isotropy (which is the defining property of FRW-models), this representative cell is indeed representative of the
whole universe.
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Poisson algebra, as was already shown in [6]. In [7] this was used to carry out a group theoretical
quantization of the model.
In this thesis we develop a general method to deform su(1,1) Poisson algebras and we apply this
method to the su(1,1) algebra of phase space functions in effective sLQC. We then investigate if this
deformation provides a way of introducing a nonzero cosmological constant in the model. This idea
is motivated by results of the analysis of LQG in three dimensions, where it has been shown that a
deformation of the gauge group SU(2) can be used to include a cosmological constant in the theory
(see e.g. [8] for a summary). This has led to the claim that the same might be true in ordinary
(four-dimensional) LQG and indeed there are some recent results that point in this direction. Re-
cent papers on the subject are e.g. [9, 10]. Although the su(1,1) Poisson algebra in our model is
evidently not a gauge group as is SU(2) in LQG, it does define a structure on the model, and it is
natural to wonder if a deformation of this structure could introduce interesting new dynamics, like
the dynamics generated by a nonzero cosmological constant.

Structure of the Thesis

The structure of the thesis is as follows. In section 2 first of all the classical theory of gravity
is summarized and this is applied to isotropic cosmological scenarios. In 2.3.2 the flat FRW-model
with a vanishing cosmological constant, coupled to a scalar field - which is the model under consid-
eration in this thesis - is discussed within this classical framework. In section 2.4 the Lagrangian
and Hamiltonian formulation of GR are reviewed, the latter of which provides the basis for LQG
and LQC. Section 3 then discusses briefly the matter of quantizing gravity.
In section 4 the phase space variables that are the starting point for LQC are introduced and in the
model under consideration the Hamiltonian constraint (arising from the Hamiltonian formulation of
GR) is reformulated in terms of these variables. Apart from some comments we do not review the
quantization of this phase space. Instead, in section 4.2.1 we use the effective dynamics to describe
the dynamics of the model with the leading quantum-modifications.
In section 5 we first review some group theoretical concepts needed to identify the structure on the
phase space of the effective dynamics in LQC and then in 5.3 we propose a general procedure for
deforming an su(1,1) Poisson algebra. In section 6 we use the group theoretical framework to identify
the su(1,1) structure of the model, and we derive the evolution in the model, using this structure.
Finally, in section 7 we apply the developed deformation procedure to deform the su(1,1) Poisson
algebra on the phase space of effective sLQC. Doing this we obtain a deformed (internal) Hamilto-
nian leading to interesting new dynamics. This section concludes with a discussion of the results.

2



2 Classical Gravity and Cosmology

2.1 Newtonian Gravity

Newton was the one that (mathematically) unified the motion of the planets around the sun with
the motion of all objects on earth. He showed that all bodies are subject to the same laws of motion,
that are now known as Newton’s laws of motion:

1. Every object in a state of uniform motion tends to remain in that state of motion unless an
external force is applied to it.

2. The relationship between an object’s mass m, its acceleration a, and the applied force F is

F = ma . (2.1)

3. For every action there is an equal and opposite reaction.

And he stated that all bodies in the universe exert a gravitational attraction on each other. According
to Newton, the gravitational force that a body of mass m1 exerts on a body of mass m2 is given by

F12 = −Gm1m2

r2
e12 , (2.2)

where r is the distance between the two bodies, e12 is the unit vector pointing from body 1 to body
2 and G is the gravitational constant. In fact, today we know that (classically) this formula applies
in the case where the two bodies are point masses. From there one can find the exact force between
two bodies of any shape by integration. And in this way one can show that (2.2) is still exact for
bodies that have a spherically symmetric mass distribution, like the sun and planets.

Later, Newtonian gravity has been reformulated as a field theory. The gravitational field is de-
fined as the vector field g(r) such that a body of mass m at position r feels a force mg(r). This
together with (2.2) implies that the gravitational field generated by a point mass m (in the origin)
must be given by

g(r) = −Gm
r2

er , (2.3)

where r = |r|. Since gravity is a conservative force (or equivalently the curl of the gravitational field
is zero) the gravitational field can be written as the gradient of a scalar potential Φ, that is called
the gravitational potential,

g = −∇Φ . (2.4)

Substituting this into Gauss’s law,

∇ · g = −4πGρ , (2.5)

where ρ is the matter density, one obtains Poisson’s equation for gravity

∇2Φ = 4πGρ . (2.6)

The field theory formulation of Newtonian gravity resolved the problem of bodies separated in
space interacting with each other: in the field theory formulation a body interacts solely with the
gravitational field at its present location. However, we are still faced with the problem that when a
field is generated, it travels instantaneously through all of space, which is impossible, according to
Special Relativity. To resolve this, we need Einstein’s theory of General Relativity.
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2.2 General Relativity

General Relativity (GR) describes Gravity not as a force, but rather as a phenomenon (one could
call it a fictitious force) arising due to the curvature of spacetime. This curvature is described by
the Lorentz invariant infinitesimal spacetime interval, or line element, ds2, defined as

ds2 = gµνdx
µdxν . (2.7)

Here we have used the summation convention, as we will continue to do from now on. gµν is called
the metric tensor or just the metric. Actually gµν are just the components of the metric tensor
as evaluated on a specific basis of one-forms3, but most often gµν is just referred to as the metric.
We also define the inverse metric gµν by gµνgνσ = gνσg

µν = δµσ. By parameterizing a path xµ(λ)
one can find the spacetime interval along the path by integration. According to this definition we
distinguish three special types of paths in spacetime:

• Timelike paths: ds2 < 0 everywhere along the path;

• Spacelike paths: ds2 > 0 everywhere along the path;

• Lightlike paths: ds2 = 0 everywhere along the path.

The proper time τ along a path in spacetime is the time that is measured by an observer that travels
along the path. Infinitesimally we can write

dτ2 = −ds2 = −gµνdxµdxν . (2.8)

Since observers always move along timelike paths, proper time is only defined for those paths.

The equivalence principle
A cornerstone in GR is the equivalence principle. The most basic (yet profound) version of it is
known as the weak equivalence principle (WEP) and dates back to Galileo. He showed that objects
falling freely4 in the Earth’s gravitational field all fall with the same acceleration, regardless of the
mass of the objects. This turns out to be so because of the equivalence of gravitational mass and
inertial mass. Classically, if mi is the inertial mass of an object and mg its gravitational mass, then
the acceleration of the object is given by

a =
F

mi
=
mg

mi
g , (2.9)

where F denotes the gravitational force and g the gravitational field. Galileo’s observation was
correct since

mi = mg , (2.10)

which is a more modern formulation of the WEP. So the acceleration of a particle, regardless of
its mass, is just the field value at the point. This is an essential feature of gravity and it has the

3A basis of one-forms is given precisely by the dxµ as in (2.7), so it would also be accurate to say that the line
element ds2 is the metric.

4In GR the notion of an object falling freely means that no external force (other than gravity, which is really not
a force) is acting on the object.
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following consequence.
Consider a spaceship in outer space, where there is no gravitational field present, and consider the
spaceship to be accelerating uniformly. All objects in the spaceship will then be pushed to the rear of
the spaceship as if there were a force present. And when an object is thrown up5, it will go up, and
then ‘fall’ down to the back of the spaceship. And most importantly, any object will fall with the
same acceleration, which is just the (opposite of the) acceleration of the spaceship. So the (fictitious)
force has precisely the distinctive feature of gravity.
Although ‘real’ gravity grows stronger when you fall further down the gravitational field, this takes
distance and time to notice. This led Einstein to postulate the Einstein equivalence principle (EEP).
It can be stated as follows: In small enough regions of spacetime, the laws of physics reduce to those
of special relativity; it is impossible to detect a gravitational field by means of local experiments. This
provides the gateway from special relativity to general relativity.

The geodesic equation
GR generalizes Newton’s first law to four-dimensional curved spacetime. Newtons first law states
that ‘every object in a state of uniform motion tends to remain in that state of motion unless an
external force is applied to it’. In flat space ‘to remain in a constant state of motion’ means simply
to move in a straight line. However, the generalization of a straight line in curved space is a geodesic:
a curve that parallel transports its own tangent vector. The geodesic equation,

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 , (2.11)

describes these geodesic curves xµ (parameterized by proper time τ). Here we have introduced the
Christoffel connection, or Christoffel symbol,

Γµρσ =
1

2
gµν (∂ρgσν + ∂σgρν − ∂νgρσ) . (2.12)

We should note that (2.11) is equivalent to

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (2.13)

for any parameter λ that is related to τ by λ = aτ + b. This is especially important for lightlike
geodesics, for which the elapsed proper time is always zero and hence it can not be used to parame-
terize the curve.
In GR freely falling test particles follow geodesics. That is, particles with no forces acting on
it follow trajectories described by the geodesic equation (2.13). In flat Minkowski space, where
gµν = diag(−1, 1, 1, 1), the Christoffel symbol vanishes and we recover the equation of a straight line

d2xµ

dλ2
= 0 . (2.14)

Minimal-coupling principle
The minimal-coupling principle is a recipe for generalizing physics in flat spacetime to curved space-
time. It may be stated as follows:

5‘up’ meaning in the direction of acceleration.
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1. Take a law of physics, valid in inertial coordinates in flat spacetime;

2. Write it in a coordinate invariant (tensorial) form;

3. Assert that the resulting law remains true in curved spacetime.

In practice this comes down to replacing the Minkowski metric ηµν with a more general metric gµν
and replacing the partial derivatives ∂µ by covariant derivatives ∇µ. (The covariant derivative is
defined in appendix A.)
Using this principle we can actually derive that the equation of motion of a freely falling test particle
is given by the geodesic equation. We start with the classical law

d2xµ

dτ2
= 0 . (2.15)

This already looks like a coordinate invariant form, since xµ is a well defined tensor. The second
derivative of it with respect to τ , however, is not. Therefore we use the chain rule to write

d2xµ

dτ2
=

d

dτ

dxµ

dτ
=
dxν

dτ

∂

∂xν
dxµ

dτ
=
dxν

dτ
∂ν
dxµ

dτ
= 0 . (2.16)

This is a genuine tensorial expression and therefore we can now generalize the law to curved spacetime
by replacing ∂ν → ∇ν . The resulting expression is

0 =
dxν

dτ
∇ν

dxµ

dτ
≡ d2xµ

dτ2
+ Γµνσ

dxν

dτ

dxσ

dτ
, (2.17)

which is exactly the geodesic equation (2.11).

The Einstein field equations
Until now we have only seen the behavior of physics in a spacetime with a given metric. Now let’s
focus on what determines the metric. For this we will need the following definitions. The Riemann
curvature tensor is defined as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (2.18)

This tensor will vanish whenever there exists a frame in which the components of the metric are
constant, i.e. the region of spacetime is flat. And the statement also works the other way round:
when Rρσµν = 0, there exists a frame in which the metric components are constant6. From this we
can define the Ricci tensor,

Rµν = Rλµλν , (2.19)

and the Ricci scalar, which is just the trace of the Ricci tensor:

R = Rµµ = gµνRµν . (2.20)

The Einstein field equations (EFEs) are then given by

Rµν −
1

2
Rgµν = 8πGTµν , (2.21)

6These two statements assume that the region of spacetime under consideration is simply-connected.
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where Tµν is the stress-energy tensor7, which describes the matter in the universe. This tensor is
conserved, i.e.

∇νTµν = 0 , (2.22)

and this expresses the conservation of mass-energy in GR. There are several equivalent definitions
for the energy-stress tensor, and for a scalar field one of these definitions is

Tµν =
−2√
−g

δSM
δgµν

, (2.23)

where g is the determinant of the metric and SM is the matter action (see section 2.4.1). The EFEs
are General Relativity’s analog to Poisson’s equation for gravity (2.6) and they describe how the
curvature of spacetime (gravity) is related to the distribution of matter and energy in the universe.
Solving these equations means finding the components of the metric. The equations can be written
equivalently as

Rµν = 8πG

(
Tµν −

1

2
T gµν

)
. (2.24)

From this expression it is easy to see that when the stress-energy tensor vanishes, the EFEs reduce
to the vacuum EFEs,

Rµν = 0 . (2.25)

2.3 FRW Cosmology

Cosmology is the study of the largest scale degrees of freedom in the universe, such as the
universe’s rate of expansion. To study those degrees of freedom one has to disregard most of the
smaller degrees of freedom. This can be done by imposing symmetries on the universe.
Observations show that our universe is on large scales homogeneous and isotropic. Homogeneity is
the property that there is no preferred point in the universe; all points are equivalent. And isotropy
is the property that there is no preferred direction in the universe; all directions are equivalent. It can
be shown that any metric satisfying these two properties can be written (in appropriate ‘co-moving’
coordinates (t, r, θ, φ)) as

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, where dΩ2 = dθ2 + sin2(θ)dφ2 . (2.26)

In this expression k = 0,±1 represents the curvature of 3-dimensional space. If k = 1, space has
constant positive curvature, like the surface of a sphere. If k = −1, space has constant negative
curvature. And if k = 0, space is flat. For a given k the metric is completely determined by
the function a(t), which is called the scale factor. The metric (2.26) is known as the Friedmann-
Robertson-Walker (FRW) metric.
In cosmology matter is often modeled as a perfect fluid characterized by an energy density ρ, pressure
P and 4-velocity uµ. The stress-energy tensor for a perfect fluid is given in contravariant form by

Tµν = (ρ+ P )uµuν + Pgµν , (2.27)

7The stress-energy tensor is sometimes also called the energy-momentum tensor or even stress-energy-momentum
tensor.
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where we must have uµ = (1, 0, 0, 0) due to homogeneity. By substituting (2.26) and (2.27) in the
EFEs (2.21) one obtains the Friedmann equations,(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ , (2.28)

ä

a
= −4πG

3
(ρ+ 3P ) . (2.29)

The former is known as the first Friedmann equation and the latter as the second Friedmann equa-
tion. Alternatively (2.28) is often called the Friedmann equation and (2.29) is sometimes called
the acceleration equation. Combining the two gives us a third (not independent, but nevertheless
important) equation

ρ̇ = −3
ȧ

a
(ρ+ P ) , (2.30)

that expresses the conservation of energy in a FRW universe. In fact, this equation is the (µ = 0)
component of (2.22) in a FRW-universe. Any two of the equations (2.28), (2.29), (2.30) are equivalent
to any other two, so to solve them one may consider any two.
One needs, however, one more ingredient to solve the Friedmann equations: an equation of state, i.e.
an equation that relates P and ρ. In cosmology often the equation of state is considered to be that
of a barotropic perfect fluid with P = wρ for a constant w. In that case (2.30) can be rewritten as

ρ̇ = −3
ȧ

a
(1 + w)ρ , (2.31)

and this can be directly integrated to

ρ = ρ0

(
a

a0

)−3(1+w)

. (2.32)

Then one only needs to substitute this in the Friendmann equation (2.28) and solve it for a(t).

2.3.1 The Cosmological Constant

Up to this point we have not discussed the cosmological constant. Yet it is an important ingredient
in GR. The cosmological constant was originally introduced by Einstein when he discovered that he
could modify his field equations (2.21) to contain an extra term, while maintaining a consistent
theory, but making it possible to construct cosmological solutions of static universes. He did not like
the idea of an expanding or contracting universe. The modified field equations read

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.33)

where Λ is the cosmological constant, which can be any real number, in principle. Current obser-
vations suggest that our universe contains a positive cosmological constant which is very small but
nonzero. Often Λ is absorbed in the definition of the stress-energy tensor, and in that case the
modified EFEs are simply the original ones (2.21). More precisely, if we consider a FRW-model,
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then the cosmological constant can be absorbed in the definition of the energy density and pressure
of the matter in the universe by making the replacements

ρ→ ρ+
Λ

8πG
, (2.34)

P → P − Λ

8πG
. (2.35)

In this way we see that the cosmological constant attributes an energy density and a pressure to the
vacuum.

2.3.2 The (k=0, Λ=0) Mass-less Scalar Field Solution

We will now use the laws of General Relativity to analyze classically the model that is the
main subject of this thesis: the FRW-model with k = 0 (the universe is spatially flat) and Λ = 0
(we do not have to redefine the energy density and pressure of the matter), coupled to a scalar field φ.

The scalar field
The stress-energy tensor of a scalar field is given in covariant form by

Tµν = ∂µφ∂νφ− 1
2gµνg

ρσ∂ρφ∂σφ− gµνV (φ) . (2.36)

Imposing homogeneity on the scalar field, due to which all spatial derivatives vanish, and using that
g00 = −1, we have

Tµν = ∂µφ∂νφ+ 1
2gµν φ̇

2 − gµνV (φ) , (2.37)

which can be written in mixed form as

Tµν = gµα∂αφ∂νφ+ 1
2δ
µ
ν φ̇

2 − δµνV (φ) . (2.38)

Then the nonzero entries are

T 0
0 = − 1

2 φ̇
2 − V (φ) , T 1

1 = T 2
2 = T 3

3 = 1
2 φ̇

2 − V (φ) . (2.39)

Now we write the stress-energy tensor of a perfect fluid (2.27) in mixed form as well,

Tµν = (ρ+ P )uµuν + P δµν , (2.40)

and using uµ = (1, 0, 0, 0) we calculate the nonzero entries

T 0
0 = −ρ , T 1

1 = T 2
2 = T 3

3 = p . (2.41)

Equating the corresponding components in (2.39) and (2.41) yields

ρ =
1

2
φ̇2 + V (φ) , P =

1

2
φ̇2 − V (φ) . (2.42)

For a mass-less scalar field, we have V (φ) = 0, and hence we have simply

ρ = P =
1

2
φ̇2 . (2.43)
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Solution to the Friedmann equations
Substituting ρ and P in the Friedmann equations (2.28), (2.29) and setting k = 0 we get two
differential equations for two unknown functions,

ä = −8πG

3
aφ̇2 , (2.44)(

ȧ

a

)2

=
4πG

3
φ̇2 , . (2.45)

and we can solve these analytically. We begin by substituting former in the latter and eliminating
φ̇2. This gives us (

ȧ

a

)2

= −1

2

ä

a
⇒ 2ȧ2 = −äa . (2.46)

Now we define v = da
dt ≡ ȧ so that we can write

ä =
dv

dt
=
dv

da

da

dt
= v

dv

da
, (2.47)

and we rewrite (2.46) in terms of v and solve for v:

2v2 = −dv
da
va (2.48)

dv

da
= −2

v

a
(2.49)

dv

v
= −2

da

a
(2.50)

ln(v) = −2ln(a) + C1 = ln(C1a
−2) (2.51)

v =
C1

a2
, (2.52)

where C1 is an integration constant. Now we can substitute back v = da
dt and solve for a(t):

v =
da

dt
=
C1

a2
(2.53)

a2

C1
da = dt (2.54)

t =
a3

3C1
+ C2 (2.55)

a3 = 3C1(t− C2) (2.56)

a(t) = sgn (3C1(t− C2)) |3C1(t− C2)| 13 (2.57)

a(t) = C1sign (t− C2) |t− C2|
1
3 , (2.58)

where C1 and C2 are integration constants and in the last step C1 has been rescaled. Because the
scale factor should always be positive, we conclude that there are two non-trivial solutions:

C1 > 0 : a(t) = am(t− t0)1/3 on the domain (t > t0) , (2.59)

C1 < 0 : a(t) = am(t0 − t)1/3 on the domain (t < t0) , (2.60)
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for a reference time t0 and positive constant am. The first solution describes a universe that starts
with a Big Bang and keeps expanding forever. The latter solution describes the exact opposite; it
describes a universe that has always been contracting and eventually reaches a Big Crunch. We can
now substitute our solutions for a(t) in (2.45) to obtain the evolution of the scalar field φ:

φ̇2 =
1

12πG

1

(t− t0)2
(2.61)

φ̇ = ± 1√
12πG

1

(t− t0)
(2.62)

φ(t)− φ(t1) = ± 1√
12πG

ln

(
t− t0
t1 − t0

)
. (2.63)

Furthermore we compute the following quantities,

ρ(t) = P (t) = 1
2 φ̇

2 =
1

24πG

1

(t− t0)2
, (2.64)

that tend to infinity when t tends to t0. Thus we encounter a singularity at t = t0, which is either a
Big Bang singularity or a Big Crunch singularity, depending on the chosen solution of a(t). In this
event the classical theory is not valid anymore and quantum effects should be included in the theory
to find out what really happens here. In section 4 we will see how the dynamics is modified, when
the model is described from the perspective of LQC. To be able to compare the classical dynamics
with the quantum dynamics later, we now write the volume V of a certain cell V as a function of
the scalar field φ, using that V ∝ a(t)3. Moreover, we set t0 = 0. We then obtain the relation

V (φ) = V0e
±
√

12πG(φ−φ0) (2.65)

for some real constant φ0 and some positive constant V0.

2.4 Lagrangian and Hamiltonian Formulation of GR

2.4.1 Lagrangian Formulation

Most prescriptions for quantizing a classical theory require that the theory is formulated as a
Lagrangian or Hamiltonian system. Therefore we would like to have GR formulated as such a sys-
tem. In this section I will summarize the Lagrangian and Hamiltonian formulation of GR. For more
elaboration on the Langrangian formulation I refer the reader to [11] and for more elaboration on
the Hamiltonian formulation I refer the reader to [12].

First we consider geometry (gravity) alone; the case in which there is no matter involved. Then
the dynamics of GR is provided by the Hilbert action,

SH =

∫
Lgd4x =

∫ √
−gRd4x, where Lg =

√
−gR (2.66)

is the corresponding Lagrangian8, that I will refer to as the Hilbert Lagrangian. The inverse metric
gµν is used as field variable and the action is varied with respect to it. Then one finds that for

8Actually, its the Langrangian density, but more often than not it is just called the Lagrangian.
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stationary points of the action we have9

Rµν −
1

2
Rgµν = 0 , (2.67)

which are the EFEs in vacuum. When we include matter, in the form of a scalar field, the action is
modified to

S =
1

16πG
SH + SM , (2.68)

where Sm is the action of the scalar field. Again varying this action with respect to the inverse
metric one obtains that the stationary points satisfy10

1

16πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0 . (2.69)

Recalling the definition of the stress-energy tensor of a scalar field (2.23) we recover the EFEs,

Rµν −
1

2
Rgµν = 8πGTµν . (2.70)

Therefore in the case of a scalar field this Lagrangian formulation is equivalent to the EFEs of general
relativity.

2.4.2 Hamiltonian Formulation

A Hamiltonian formulation of GR requires the breakup of space and time. Since this breakup
can be different for different observers (coordinate systems) in GR, we need to specify what we mean
by space and what we mean by time. We choose a time function t and a vector field tµ on spacetime
such that the surfaces Σt of constant t are spacelike Cauchy surfaces11 and such that tµ∇µt = 1. We
then define the lapse function N and the shift vector Na as

N = −tµnµ = −gµνtµnν , Na = hab t
b , (2.71)

where nµ is the unit vector perpendicular to Σt and hab = gab + nanb is the induced spatial metric
on Σt. Here greek indices (µ, ν, . . . ) are used for four-vectors on spacetime, whereas latin indices
(a, b, . . . ) are used for three-dimensional vectors on Σt. We use as field variables hab, N and the
covariant form of the shift vector Na = habN

b. In these three values the same information is
contained as in gab that we used as field variable in the Lagrangian approach. Our first job is to
express the Hilbert Lagrangian (2.66) in terms of these variables. We have

√
−g = N

√
h and R = (3)R+KabK

ab −K2 , (2.72)

where Kab is the extrinsic curvature of Σt, K = Ka
a is the trace of Kab,

(3)R is the scalar curvature
on Σt and h is the determinant of hab. Furthermore, discarding all terms that will give rise to
boundary terms, we can write

Kab =
1

2N
(ḣab −DaNb −DbNa) , (2.73)

9Assuming that the variation of the metric and its first derivative vanish at infinity.
10See previous footnote.
11A Cauchy surface is a subset of space-time which is intersected by every inextensible, non-spacelike (i.e. causal)

curve exactly once.
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where Da is the covariant derivative operator on Σt associated with hab (defined in appendix A).
Putting it all together, we can write the Hilbert Lagrangian as

Lg =
√
−gR = N

√
h
(

(3)R+KabK
ab −K2

)
. (2.74)

The momentum conjugate to hab then reads

πab =
δL
δḣab

=
√
h
(
Kab −Khab

)
. (2.75)

The conjugate momenta to N and Na are identical to zero, since no time derivatives of these variables
appear in the Lagrangian. This tells us that N and Na should not be viewed as dynamical variables.
In fact, they play the role of Lagrange multipliers. So our configuration space is now just the space
of Riemannian metrics hab on Σt. Again discarding boundary terms, the Hamiltonian density is then
given by

H = πabḣab − Lg

= h1/2

{
N

[
−(3)R+ h−1πabπab −

1

2
h−1π2

]
− 2Nb

[
Da

(
h−1/2πab

)]}
, (2.76)

where π = πaa. The variation of H with respect to N and Na yields the constraints

Cgrav := −
√
h (3)R+

πabπab√
h
− π2

2
√
h

= 0 , (2.77)

Cgravb := −2h1/2Da

(
h−1/2πab

)
= 0 , (2.78)

that are known respectively as the Hamiltonian constraint and the diffeomorphism constraint. We
see that we can write the Hamiltonian density as

H = NCgrav +NaCgrava , (2.79)

and this implies that the Hamiltonian density is identical to 0. The variation of H with respect to
hab yields

ḣab =
δH

δπab
= 2h−1/2N

(
πab −

1

2
hab π

)
+DaNb +DbNa, (2.80)

π̇ab =
δH

δhab
=−Nh1/2

(
(3)Rab − 1

2
(3)Rhab

)
+

1

2
Nh−1/2hab

(
πcdπ

cd − 1

2
π2

)
− 2Nh−1/2

(
πacπc

b − 1

2
ππab

)
+ h1/2

(
DaDbN − habDcDcN

)
+ h1/2Dc

(
h−1/2N cπab

)
. (2.81)
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Those are known as the dynamical equations. The set of equations (2.77 - 2.81) is equivalent to the
vacuum EFEs.

If there is matter present, a matter term is added to each constraint:

C = Cgrav + Cmatt = 0 , (2.82)

Ca = Cgrava + Cmatta = 0 , (2.83)

and we can write the resulting Hamiltonian density as

H = N
(
Cgrav + Cmatt

)
+Na

(
Cgrava + Cmatta

)
. (2.84)

In the case of the FRW-model that we have already discussed classically and that we will discuss
in the context of LQC, the diffeomorphism constraint is automatically satisfied. Therefore we can
write the Hamiltonian as12

C =

∫
Σ

d3xN
(
Cgrav + Cmatt

)
= N

(
Cgrav + Cmatt

)
. (2.85)

Here Cgrav =
∫

Σ
d3x Cgrav and Cmatt =

∫
Σ
d3x Cmatt. (The lapse function can be taken out of the

integral due to homogeneity.) Moreover, in our case, where matter is described by a scalar field,
Cmatt is precisely the Hamiltonian of the scalar field, and we will use this explicitly later.

12Provided the integrals do not diverge; otherwise this may get tricky.
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3 Quantizing Gravity and Cosmology

In the past century quantum mechanics has proven to be incredibly successful, and it seems
that any fundamental theory of physics should be formulated within the framework of quantum
mechanics. This has already been accomplished for the theories of all fundamental forces, except for
the theory of gravity. E.g. the electromagnetic interaction and the strong interaction are described
quantum mechanically in the standard model by quantum electrodynamics (QED) and quantum
chromodynamics (QCD), respectively. Gravity, however, has not yet been formulated successfully
as a quantum theory. And there are various reasons for this. The most important of these might
be that quantum theories normally assume a fixed metric (most often the Minkowski metric), that
serves as a background on which the dynamical quantum fields of the theory are defined. In General
relativity, however, there is no fixed metric, since the metric is itself the dynamical field variable. We
also saw in section 2.4.2 that the Hamiltonian formulation of GR leads to several constraints due to
which the Hamiltonian (that formally can not be called a Hamiltonian anymore) vanishes entirely,
and this leads to complications for the canonical quantization approach (see below). Because of these
and other difficulties it is quite challenging to construct a quantum theory of gravity. Yet there are
several promising approaches, one of which is Loop Quantum Gravity (LQG).

3.1 Canonical Quantization

One of the most frequently used quantization procedures is the canonical quantization procedure.
The word canonical refers to the fact that the procedure is used to quantize theories that are
formulated as Hamiltonian systems. From that starting point the procedure prescribes that one
ought to replace any phase space variables A,B, . . . by operators Â, B̂, . . . such that the commutators
of the operators correspond to the Poisson brackets of the classical variables in the following way,

[Â, B̂] = i~{̂A,B} , (3.1)

which is sometimes called the Dirac rule, for he was the one that proposed it.
The most basic example to illustrate this procedure is the case of a single non-relativistic free par-
ticle. In this case the phase space is described by the variables x and p that denote position and
momentum of the particle, respectively. They satisfy {x, p} = 1 and therefore the canonical quan-
tization says that in the quantum theory of this system one should have the commutation relation
[x̂, p̂] = i~, which is indeed the case in ordinary quantum mechanics. And the operators can thus be
represented by the usual operators x̂ = x, p̂ = −i~ ∂

∂x .

Remark. Altough we have adopted the convention ~ = 1, in the expressions of this section we
have written ~ explicitly, to show it’s fundamental role in the canonical quantization procedure. In
the following sections we will set it to one again and not write it explicitly anymore.
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4 Loop Quantum Cosmology

The ultimate way to obtain a quantum theory of cosmology would be first to quantize all of
GR, which is what Loop Quantum Gravity (LQG) is concerned with, and then to do a symmetry
reduction (impose things as homogeneity, isotropy, etc.) and see what physics results from this.
However, at present we do not have a quantized theory of gravity that is ready for use, so this is
currently not an option. Therefore what one does in Loop Quantum Cosmology (LQC), is first to
do the symmetry reduction – thereby obtaining classical cosmological models as e.g. FRW-models –
and then to apply the ideas and techniques of LQG to those models in order to try to quantize them.
Such models are much simpler than full GR, and therefore they are also much simpler to quantize.
In this way LQC has already succeeded in quantizing a number of cosmological models successfully,
thereby resolving the classical singularities. Although quantum theories of cosmology obtained by
applying full LQG, whenever this will become possible, might give results that are different from
those of LQC, the hope is that LQC really captures the main quantum effects affecting the scale
factor.
We see something similar for the hydrogen atom. The hydrogen atom is a simple model, rather than
a whole theory. This makes its quantization relatively easy. Usually the hydrogen atom is quantized
by using ordinary quantum mechanics, and this works excellently well; all the main quantum effects
in the system are incorporated by doing this. Ultimately, however, to quantize the hydrogen atom we
should take full QED and apply it to the hydrogen atom. But most of the time we’re not concerned
with this, as the main quantum effects are the same for both approaches. We hope that the same
will apply for LQC.

4.1 Classical Phase Space of Loop Quantum Gravity

4.1.1 Ashtekar-Barbero Variables

In this section I give a brief description of the Asktekar-Barbero formalism, on which LQG is
based [1]. First we define new variables, the Asktekar-Barbero variables, that are related to the
standard variables of GR. Then the constraints arising from the Hamiltonian formalism of GR are
rewritten in terms of those variables. Since the Asktekar-Barbero variables are mathematically very
nice objects, this makes it easier to do the quantization.

The Asktekar-Barbero variables are defined as follows. (Latin indices from the beginning of the
alphabet (a, b, . . .) denote spatial indices whereas Latin indices from the middle of the alphabet
(i, j, . . .) denote SU(2) indices that label new degrees of freedom introduced by the formalism.)
First we define the co-triad eia, such that the induced spatial metric is given by hab = eiae

j
bδij , where

δij is the Kronecker delta. The triad eai is then defined as its inverse: eai e
j
b = δijδ

a
b . The configuration

variable will be the Ashtekar-Barbero connection, given by

Aia = Γia + γKi
a , (4.1)

where 0 6= γ ∈ R is known as the Immirzi parameter (whose value is fixed by calculations of black
hole entropy), Ki

a = Kabe
b
jδ
ij is the extrinsic curvature in triadic form, defined from the ‘original’

extrinsic curvature tensor Kab as defined in (2.73) and Γia is the spin connection compatible with
the densitized triad, i.e. it satisfies DbE

a
i + εijkΓjbE

ak = 0, where εijk is the totally antisymmetric
symbol and Db is the spatial covariant derivative operator as defined in appendix A.
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The conjugate momentum variable, corresponding to the Ashtekar-Barbero connection, is the den-
sitized triad, given by

Eai =
√
h eai , (4.2)

where h is the determinant of the spatial metric. In these new variables the constraints read

Cgrav =
1√

|det(E)||
εijk

[
F iab − (1 + γ2)εimnK

m
a K

n
b

]
EajEbk = 0 , (4.3)

Cgrava = F iabE
b
i = 0 , (4.4)

Gi = ∂aE
a
i + εijkΓjaE

ak = 0 , (4.5)

where F iab = ∂aA
i
b−∂bAia+εijkA

j
aA

k
b is the curvature tensor of the Ashtekar-Barbero connection. The

first two of these equations are respectively the Hamiltonian constraint (2.77) and the diffeomorphism
constraint (2.78), and the third equation is an additional constraint, called the gauge constraint or
the Gauss constraint, that fixes the SU(2) freedom of the formalism. Furthermore we have the
nonzero Poisson bracket

{Aai (x), Ejb (y)} = 8πGγδab δ
i
jδ(x− y) . (4.6)

4.1.2 Holonomy-Flux Algebra

In LQG the basic variables that will be quantized are holonomies around loops and fluxes through
these loops. That explains the name Loop Quantum Gravity. The holonomy of the connection A
along a curve e is defined by

he(A) = Pe
∫
e
dxaAia(x)τi . (4.7)

Here P denotes the path ordering and τi are the generators of (a representation of) the su(2) Lie
algebra such that [τi, τj ] = εkijτk. The holonomies contain the same information as the connection.
Note that, since a holonomy is the exponentiation of an element of su(2), it is an element of SU(2)
(as will be shown in section 5 for the fundamental representation). The variables conjugate to the
holonomies are the fluxes of Eai over surfaces S and smeared with an su(2)-valued function f i:

E(S, f) =

∫
S

f iEai εabcdx
bdxc . (4.8)

We then have the nonzero Poisson bracket

{E(S, f), he(A)} = 2πGγ ε(e, S)f iτihe(A) , (4.9)

where ε(e, S) represents the regularization of the Dirac delta: it vanishes if e does not intersect S
or if e ⊂ S; and it is given by ε(e, S) = ±1 whenever e and S intersect in one point. The sign then
depends on the relative orientation between e and S.
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4.2 The FRW-model (k = 0, Λ = 0) Coupled to a Scalar Field

The simplest (non-trivial) model in LQC is the flat FRW-model with a vanishing cosmological
constant, coupled to a mass-less scalar field. This model is described classically in section 2.3.2. In
LQC this model can be quantized completely (even analytically) and therefore it is sometimes called
solvable Loop Quantum Cosmology (sLQC). In this case the diffeomorphism constraint (4.4) and
the Gauss constraint (4.5) are automatically satisfied, and the integral version of the gravitational
Hamiltonian constraint (4.3) (which is now precisely the gravitational Hamiltonian) is given by

Cgrav =

∫
Σ

d3x Cgrav = − 1

γ2

∫
Σ

d3x
εijkF

i
abE

ajEbk√
|det(E)||

. (4.10)

Integrals such as the above will generally diverge due to homogeneity. Therefore the analysis (and
thereby the integrals) is usually restricted to a finite cell V of volume V . Since we are dealing with
a homogeneous universe, the behavior of this cell will be representative of the whole universe.

The metric is given by the flat FRW-metric that can be written as ds2 = −dt2 + habdx
adxb, where

hab = a(t)2̊hab, for a fiducial metric h̊ab that does not depend on time (or position). We define
also the fiducial triad e̊ai and co-triad e̊ia as the ones that correspond to the fiducial metric. (More
generally, in the following, whenever there is a circle above a variable, it corresponds to the fiducial
metric.) The volume of the cell V with respect to the fiducial metric we will denote by V0. This
implies that V = V0 a

3.
We can describe the Ashtekar-Barbero connection and the densitized triad by a single variable c and
p, respectively,

Aia = c (V0)−1/3 e̊ia, Eai = p (V0)−2/3
√
h̊ e̊ai , (4.11)

where c and p are conjugate variables such that {c, p} = 8πGγ
3 and p is related to the scale factor a

by

a = V
−1/3
0

√
|p| , (4.12)

This suggests that c and p are convenient variables in LQC, which is indeed the case. p is positive
(negative) if the orientation of fiducial triad is equal (opposite) to the orientation to the physical
triad. Note that V = |p|3/2.

Holonomies and fluxes
Now we turn to the holonomies and fluxes. Again due to homogeneity, it suffices to consider only
holonomies hµi (c) along the (straight) edges of V with oriented length µ(V0)1/3 for a constant pa-
rameter µ.13 The holonomy in the direction i is given by

hµi (c) = eµcτi = cos
(µc

2

)
1 + 2sin

(µc
2

)
τi . (4.13)

For the fundamental representation of su(2) the last equality in the above expression will be shown
to be true in section (5.1). The configuration variables are then the matrix elements of the above
expression; they are given by

Nµ(c) = e
iµc
2 . (4.14)

13These holonomies and fluxes form a complete set for describing the phase space.
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As for the conjugate momenta, it is sufficient to consider only fluxes across the faces of V. Those
are given by

E(S, f) = p(Vo)
−2/3AS,f , (4.15)

where AS,f is the fiducial area of S times an orientation factor depending on f . So essentially the
flux is described by a single variable p. The geometry part of the phase space is then described by
the variables Nµ(c) and p, whose Poisson bracket is given by

{Nµ(c), p} = i
4πGγ

3
µNµ(c) , (4.16)

and these are the basic variables that are quantized in sLQC.

Loop quantization
By quantizing this phase space, one obtains, instead of an operator representing c, an operator

representing it’s exponential, the holonomy Nµ(c) = e
iµc
2 . Then the gravitational Hilbert space

is not the standard Hilbert space (i.e. the space of square integrable functions), but rather it is
L2(RBohr, dµBohr), i.e. the space of square integrable functions on the Bohr compactification of
the real line [13]. It is, however, more convenient to work in the momentum representation. The
quantum states Nµ(c) can then be represented as kets |µ〉 and these span the corresponding Hilbert
space. An important feature is that these states are normalizable with respect to the discrete (!)
inner product,

〈Nµ(c)|Nµ′(c)〉 = δµ,µ′ . (4.17)

The basic operators then act on these states in the following way

N̂µ′ |µ〉 = |µ+ µ′〉 , (4.18)

p̂|µ〉 = p(µ)|µ〉 , (4.19)

where p(µ) = 4πGγ
3 µ. The expression (4.18) follows immediately from the expression of Nµ(c) and

|µ〉, and (4.19) then follows from the Dirac rule (3.1).

On the other hand, for the scalar field we one uses a standard representation, where φ̂ acts by
multiplication, φ̂ = φ, and p̂φ acts by differentiation, p̂φ = −i~∂φ.

The Hamiltonian constraint
In terms of c and p the gravitational part of the (integrated14) Hamiltonian constraint (4.10) reads

Cgrav = −
3c2
√
|p|

8πGγ2
. (4.20)

The matter part of the Hamiltonian constraint is obtained from the Lagrangian density for a ho-
mogeneous mass-less scalar field: L = 1

2 φ̇
2. Since the field is homogeneous, we can look directly at

the Lagrangian, which is simply given by L = V L = 1
2 φ̇

2V . The momentum conjugate to φ is then

14From now on we will only work with the integrated constraint, so I will drop the word integrated from now on.
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given by pφ = ∂L/∂φ̇ = φ̇V , so that the matter Hamiltonian is given by C = pφφ̇− L = 1
2 φ̇

2V . As
a function of φ and pφ the matter Hamiltonian reads

Cmatt =
p2
φ

2V
=

p2
φ

2|p|3/2
. (4.21)

Adding the matter Hamiltonian to the gravitational constraint, as explained in section 2.4.2, we
obtain the total Hamiltonian constraint

C = Cmatt + Cgrav =
p2
φ

2|p|3/2
−

3c2
√
|p|

8πGγ2
= 0 . (4.22)

For our present purposes, however, it is more convenient to use an even different pair of gravitational
variables: b and v, related by the previous variables by

b =
c

γ
√
|p|
, v =

|p|3/2sgn(p)

4πG
. (4.23)

In these variables we have {b, v} = 1 and the constraint reads

C =
p2
φ

8πG|v|
− 3

2
b2|v| = 0 . (4.24)

The volume of the cell V is then given by V = 4πG|v| and thus the behavior of the volume of this
cell and, due to homogeneity, the volume of the entire universe is represented by the variable v.

The scalar field φ as internal time
In the quantized model, the scalar field φ is used as internal time, i.e. the quantum states evolve as
functions of φ rather than t. This is because the generator of time evolution (i.e. the Hamiltonian)
is identical to zero, and therefore it does not generate any evolution. I would like to illustrate this
fact by considering the Schrödinger equation,

i
∂

∂t
Ψ = ĤΨ , (4.25)

for a wavefunction Ψ and Hamiltonian operator Ĥ. If the Hamiltonian vanishes, then the corre-
sponding Hamiltonian operator must analogously act as the zero-operator on all quantum states,
and hence one is left with the simple fact that

∂

∂t
Ψ = 0 , (4.26)

so there is no time evolution. Intuitively we can see the problem by realizing that time is not uniquely
defined in GR; different observers can measure different times between the same events. This real-
ization suggests that the evolution of the quantum states should not be described by a particular
time coordinate, but rather it should be described in an observer independent way. A way to achieve
this is to regard φ as internal time. Then, in LQC, one can obtain wave functions Ψ(v, φ), and these
are in fact independent of the observer.
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Figure 1: In the red, we see the evolution of the expectation value of the quantum operator in LQC,
corresponding to the classical variable v , which is proportional to the volume of cell V and due to
homogeneity represents the evolution of the whole universe. The blue and green curves show the
classical trajectories of v. The first ones to produce plots like this were Ashtekar A., Pawlowski T.
and Singh P. This plot is taken from [14].

With numerical simulations it has been shown that for semi-classical states15 the expectation value
of the volume operator (corresponding to the cell V) undergoes a quantum bounce as the volume
reaches a minimum value. This is illustrated in figure 1. Also, by restricting the analysis to a super-
selection sector (which is, informally, a subspace of the full kinimatical Hilbert space that is closed
under the action of the relevant operators on the Hilbert space), the dynamics can be computed
analytically. The expectation value of V̂ (again for semi-classical states) then satisfies

〈|V̂ |〉 = V+e
√

12πGφ + V−e
−
√

12πGφ , (4.27)

where V+ and V− are positive constants. The expectation value never reaches zero and the singular-
ities are thus absent and replaced by a bounce. This shows that the bounce is a generic feature of

15Semi-classical states are states for which the wave functions are highly peaked around the classical trajectory.
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sLQC.

4.2.1 Effective Dynamics

For semi-classical states the leading quantum corrections on the dynamics of the model can be
formulated in a classical way by something that is known as effective dynamics. Basically all one has
to do is make the replacement (‘regularization’) b→ sin(λb)/λ for a constant λ ∈ R. The constraint
(4.24) then reads

C(eff) = −3

2

sin2(λb)

λ2
|v|+

p2
φ

8πG|v|
= 0 , (4.28)

and, for semi-classical states, the classical dynamics generated by this constraint will resemble the
dynamics of the expectation values of the quantum operators extremely well. Therefore the effective
dynamics serves as a very useful tool for various purposes. In the following, we will derive the dy-
namical evolution of b and v resulting from the effective dynamics by solving the Hamilton equations
in a straightforward way. Later (section 6) we will also derive the same dynamical evolution by using
group theoretical arguments, and for this we will use the concepts that will first be developed in
section 5.

Now, to compute the dynamics generated by the effective constraint, we change variables once
again, according to the canonical transformation v → v′ = v/λ, b → b′ = λb, and redefine v := v′,
b := b′, the constraint then reads

C(eff) = −3

2

sin2(b)

|λ|
|v|+

p2
φ

8πG|λ||v|
= 0 . (4.29)

We will use φ as internal time, as is done in the genuine quantum theory, and so compute the
evolution of the system as it changes with φ. We do this as follows. First we write the Hamilton
equation

∂φ

∂t
= {φ,C} =

∂C

∂pφ
(4.30)

in a convenient way:

∂t

∂φ
=
∂pφ
∂C

. (4.31)

The other two Hamilton equations that we will use are

∂b

∂t
= {b, C} =

∂C

∂v
=
∂C

∂pφ

∂pφ
∂v

, (4.32)

∂v

∂t
= {v, C} = −∂C

∂b
= − ∂C

∂pφ

∂pφ
∂b

. (4.33)

(4.34)

22



Now we write out the derivatives of b and v with respect to φ using the chain rule, and substitute
(4.31), (4.32) and (4.33) to obtain what we will call the internal Hamilton equations.

∂b

∂φ
=
∂b

∂t

∂t

∂φ
=

(
∂C

∂pφ

∂pφ
∂v

)(
∂pφ
∂C

)
=
∂pφ
∂v

(4.35)

∂v

∂φ
=
∂v

∂t

∂t

∂φ
=

(
− ∂C
∂pφ

∂pφ
∂b

)(
∂pφ
∂C

)
= −∂pφ

∂b
. (4.36)

From these equations we see that we can regard pφ as the internal Hamiltonian generating evolution
in φ. The phase space is then reduced to the two dimensions constituted by b and v and the
Hamiltonian constraint (4.29) can be rewritten to write the internal Hamiltonian as a function of
those variables,

Hint = pφ = ±
√

12πGv sin(b) . (4.37)

Evolution in φ is then given simply by the internal Hamilton equations

∂φv = {v,Hint}, ∂φb = {b,Hint} . (4.38)

Noting the constant factor in the internal Hamiltonian, these equations take a simple form for the
internal time variable τ :=

√
12πGφ, namely

∂τv = cos(b)v, ∂τ b = −sin(b) (4.39)

The solutions are given by

v(τ) = v0 cosh(τ − τ0), b(τ) = arccos(tanh(τ − τ0)) . (4.40)

Since |v| is proportional to the volume, the volume goes as V ∝ cosh(τ − τ0) which coincides with
expectation value of the volume operator in the analytic solutions of the quantum model (4.27) if
V+ ≈ V−.
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5 Groups, Algebras and Deformations

In this section we will develop the mathematical concepts needed 1) to identify the structure of
the phase space of the effective dynamics, 2) to use this structure to compute the evolution of the
variables b and v, and 3) to deform this structure and thereby deform the (internal) Hamiltonian
and the dynamics.

Definition 1. A group is a set G equipped with a binary operation G×G → G : (g1, g2) 7→ g1 ∗ g2

that satisfies the following conditions:

• Associativity: for all g1, g2, g3 ∈ G : g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3

• There exists a neutral element e ∈ G such that for all g ∈ G : e ∗ g = g ∗ e = g

• for all g ∈ G there exists an inverse g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

In case of groups where the elements are matrices, it is assumed throughout this text that the binary
operation is matrix multiplication. These groups are called matrix groups.

Definition 2. A Lie group L is a group which is at the same time a smooth (finite-dimensional)
manifold such that the binary operation G × G → G : (g1, g2) 7→ g1 ∗ g2 and the inverse G × G →
G : g 7→ g−1 are smooth.

Definition 3. A Lie algebra (V, [ , ]) over K, where K can be R or C, is a vector space V over K
together with a binary operation V × V → V : (v1, v2) 7→ [v1, v2] (the Lie bracket) such that for all
X,Y, Z ∈ V :

• [X,Y ] = −[Y,X] (antisymmetry)

• [aX+bY, Z] = a[X,Z]+b[Y,Z] and [X, aY +bZ] = a[X,Y ]+b[X,Z] for all a, b ∈ K (bilinearity)

• [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity).

The basis vectors of V are called the generators of the Lie algebra.

For any Lie group there is a corresponding Lie algebra, which is the tangent space of the Lie group
at the identity. Conversely, for any (finite-dimensional) Lie algebra there is a corresponding (but
not always unique) Lie group. Elements of a Lie algebra can be viewed as infinitesimal versions of
elements of the corresponding Lie group. This will be demonstrated for the Lie groups SU(2) and
SU(1,1) in section 5.1 and 5.2, respectively.

Definition 4. A K-algebra (V, ·) (also called an algebra over K) is a vector space V over a field K
equipped with a bilinear product V × V → V : (v1, v2) 7→ v1 · v2 such that for all x, y, z ∈ V :

• (x+ y) · z = x · z + y · z

• x · (y + z) = x · y + x · z

• (ax) · (by) = (ab)(x · y) for all a, b ∈ K.

An associative K-algebra is then a K-algebra that is associative, i.e.

• (x · y) · z = x · (y · z) for all x, y, z ∈ V
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Definition 5. A Poisson algebra (V, ·, [ , ]) over K, where K can be R or C, is a vector space V
together with two binary operations V × V → V : (v1, v2) 7→ v1 · v2 (multiplication) and V × V →
V : (v1, v2) 7→ [v1, v2] (the Lie bracket) such that

• (V, [ , ]) is a Lie algebra over K

• (V, ·) is an associative K-algebra

• the Lie bracket satisfies the Leibniz rule [X · Y,Z] = X · [Y,Z] + [X,Z] · Y for all X,Y, Z ∈ V .

Since the Poisson bracket satisfies antisymmetry, bilinearity and the Jacobi identity (see appendix B),
it can often be considered a Lie bracket. And since it also satisfies the Leibniz rule, an associative
K-algebra equipped with the Poisson bracket (a phase space) can often be considered a Poisson
algebra. Throughout this thesis, whenever I refer to a Poisson algebra, it is implied that the Lie
brackets are given by Poisson brackets.

5.1 The Lie Group SU(2) and its Lie Algebra su(2)

Although the Lie group SU(2) and its Lie algebra su(2) are not made use of in this thesis, apart
from mentioning them in the description of LQG, a brief description of them is will be given in
this section. This is because they are well known and they have a lot in common with SU(1,1) and
su(1,1). If the reader is familiar with SU(2), he/she may find it beneficial to relate the concepts that
will be developed for SU(1,1) to SU(2). Also, the deformations of su(2), that are also relatively well
known, have played an important role in developing the deformations of su(1,1) in this thesis.

The Lie group SU(2) is the group consisting of all complex 2 × 2 unitary matrices with deter-
minant equal to 1. A unitary matrix is a matrix U who’s Hermitian conjugate is equal to its inverse,
i.e. U† = U−1. This implies that U†U = 1. We can thus reformulate: SU(2) is the group consisting
of complex 2x2 matrices for which det(U) = 1 and

U†εU = ε , (5.1)

where ε = 1. Now it might seem strange that we have introduced ε here, but in this way we will be
able to see a clear correspondence between the groups SU(2) and SU(1,1), since the only difference
between them is ε. This matrix ε is actually a metric that defines a scalar product 〈z|ε|w〉 of two
vectors |z〉 and |w〉 living in the vector space that U acts on and their Hermitian conjugates 〈z| and
〈w|. And whatever the exact form of ε may be, a matrix that satisfies (5.1) leaves this scalar product
invariant, for we have

〈z′|ε|w′〉 = 〈z|U†εU |w〉 = 〈z|ε|w〉 . (5.2)

For SU(2) this is the conventional scalar product and the elements of SU(2) therefore leave angles
and distances invariant. Explicitly, the group elements U ∈ SU(2) are given by

U ∈
{(

α β
−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
, (5.3)

where a bar denotes complex conjugation.
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The Lie algebra su(2) is the vector space V spanned by the matrices

τ1 =
1

2

(
0 −i
−i 0

)
; τ2 =

1

2

(
0 −1
1 0

)
; τ3 =

1

2

(
−i 0
0 i

)
(5.4)

equipped with the Lie brackets (which just the commutators):

[τ1, τ2] = τ3, [τ2, τ3] = τ1, [τ3, τ1] = τ2, (5.5)

which in some texts is written very compactly, adopting the summation convention, as

[τi, τj ] = εij
kτk, (5.6)

where i, j, k = 1, 2, 3. If, however, the totally antisymmetric symbol, εij
k, needs to specified explicitly,

this is probably not worth the effort, for it is given by

εij
k =

 1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123

0 otherwise
, (5.7)

which is quite a big chunk of formula.

Any element of SU(2) can be obtained by exponentiating an element of the su(2) algebra. To
see this, we write a general su(2) element g as a linear combination of its basis elements, g =
u1τ1 + u2τ2 + u3τ3 ≡ ~u · ~τ , with ~u ∈ R3. Then, using (~u · ~τ)2 = −|u|2 1 and substituting this in the
Taylor expansion of the exponential function, we find that

eg = e~u·~τ = cos

(
|u|
2

)
1 + 2sin

(
|u|
2

)
~u · ~τ
|u|

=

 cos

(
|u|
2

)
+ i

u3

|u|
sin

(
|u|
2

)
− u2

|u|
sin

(
|u|
2

)
+ i

u1

|u|
sin

(
|u|
2

)
u2

|u|
sin

(
|u|
2

)
+ i

u1

|u|
sin

(
|u|
2

)
cos

(
|u|
2

)
− i u3

|u|
sin

(
|u|
2

)
 ∈ SU(2) . (5.8)

One can check that this matrix is indeed of the form (5.3), which proves that it is an element
of SU(2). From (5.3) we also note that SU(2) has three independent real parameters16. In (5.8)
the parameterized elements of SU(2) also have three independent parameters. This proves that all
elements of SU(2) can be obtained by this parameterization and therefore all elements of SU(2) can be
obtained by exponentiating the elements of its Lie algebra. Conversely, from this parameterization,
we easily see that when we take u to be infinitesimal, and thus only consider the 0th and 1st order
terms in the Taylor expansion, that

g = 1 + ~u · ~τ , (5.9)

since sin(x) = x + O(x3) and cos(x) = 1 + O(x2). This shows that ~u · ~τ is the tangent vector at
the identity. The tangent space is thus the space spanned by the generators τi, which is precisely

16For there are two complex variables, α and β, that constitute four real parameters, and we have one (real) equation
for them that takes away one parameter.
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the definition we had adopted for the su(2) Lie algebra. We can thus conclude that indeed su(2) is
the tangent space of SU(2) at the identity, as was mentioned earlier.

Often, the notion ‘su(2) algebra’ is used to denote a Lie algebra with Lie brackets (5.6) in a
more general sense; the Lie bracket is not necessarily the commutator and the underlying vec-
tor space can be any vector space V . If there exists a basis of vectors τ̃i for V that satisfies
[τ̃i, τ̃j ] = εij

k τ̃k, i, j, k ∈ {1, 2, 3}, where [ , ] is a general Lie bracket, as according to definition 4,
then we say that V equipped with [ , ] is an su(2) algebra, or that the generators τ̃i (or any other
complete set of basis vectors of V ) close an su(2) algebra.

5.2 The Lie Group SU(1,1) and its Lie Algebra su(1,1)

The Lie group SU(1,1) is the group consisting of all complex 2×2 matrices U for which det(U) = 1
and

U†εU = ε , where ε =

(
1 0
0 −1

)
. (5.10)

Note that the definition is the same as for SU(2), except for the fact that ε has changed. So therefore
SU(1,1) also has the property that it leaves the scalar products invariant (see previous section), yet
in this case the scalar product is defined by the metric diag(1,−1). Explicitly, the group elements
U ∈ SU(1,1) are given by

U ∈
{(

α β
β̄ ᾱ

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
. (5.11)

The Lie algebra su(1,1) is obtained by considering the vector space V spanned by the matrices

σ1 =
1

2

(
0 1
−1 0

)
; σ2 = −1

2

(
0 i
i 0

)
; σ3 =

1

2

(
1 0
0 −1

)
(5.12)

equipped with the Lie brackets given by the commutators:

[σ3, σ1] = iσ2; [σ3, σ2] = −iσ1; [σ1, σ2] = −iσ3 . (5.13)

The group SU(1,1) can be obtained from its Lie algebra by exponentiation, just like was the case
for SU(2). But it is a bit more tricky this time. We again write a general element of su(1,1) as
a linear combination of the generators, g = ~u · ~σ, where we consider ~u to live in R3 with metric
diag(−1,−1,+1). Then its norm is given by |~u|2 = −u2

1 − u2
2 + u2

3 and we distinguish three cases:
(i) vanishing norm, (ii) positive norm and (iii) negative norm. By realizing that

(2~u · ~σ)2 =

(
|u|2 0
0 |u|2

)
⇒


(i) (2~u · ~σ)2 = 0
(ii) (2~u · ~σ)2 = abs

(
|~u|2
)
1

(iii) (2~u · ~σ)2 = −abs
(
|~u|2
)
1

(5.14)
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and substituting this in the Taylor expansion of the exponential, we obtain

(i) ei~u·~σ = 1 + i~u · ~σ ∈ SU(1, 1)

(ii) ei~u·~σ = cos

(
−|~u|2

2

)
1 + 2i sin

(
|~u|
2

)
~u · ~σ
|~u|

∈ SU(1, 1)

(iii) ei~u·~σ = cosh

(√
−|~u|2
2

)
1 + 2i sinh

(√
−|~u|2
2

)
~u · ~σ√
−|~u|2

∈ SU(1, 1)

(5.15)

and these are all elements of SU(1,1), since they are of the form (5.11). And because we have the
elements parameterized by the three independent components of ~u, and SU(1,1) has three indepen-
dent parameters as well, we can obtain all elements of SU(1,1) by exponentiating elements of su(1,1).
Conversely, by looking at parameterized group elements we see that the tangent space of SU(1,1) at
the identity is indeed precisely the su(1,1) algebra.

Just as is the case with su(2), often the notion ‘su(1,1) algebra’ is used to denote a Lie algebra
with Lie brackets (5.6) in a more general sense; the Lie bracket is not necessarily given by the com-
mutator and the underlying vector space can be any vector space V . If there exists a basis of vectors
σ̃i for V , for i = 1, 2, 3, that satisfy

[σ̃3, σ̃1] = iσ̃2; [σ̃3, σ̃2] = −iσ̃1; [σ̃1, σ̃2] = −iσ̃3 , (5.16)

where [ , ] is a general Lie bracket, as according to definition 4, then we say that V equipped with
[ , ] is an su(1,1) algebra, or that the generators σ̃i (or any other complete set of basis vectors of V )
close an su(1,1) algebra.
In view of later application, a useful set of basis vectors is the set of J+ = σ̃1 + iσ̃2, J− = σ̃1 − iσ̃2

and J3 = σ̃3, for which the Lie brackets become

[J3, J±] = ±J±, [J+, J−] = −2J3 . (5.17)

Another useful set of generators is just the set of Ji, multiplied by (−i) : K+ = −iJ+, K− = −iJ−
and K3 = −iJ3. These have the Lie brackets

[K3,K±] = ∓iJ±, [K+,K−] = 2iK3 . (5.18)

5.2.1 Realization of su(1,1)

We define two complex spinor variables z1, z2 (it will become clear later why we call them spinor
variables), with canonical Poisson brackets

{zi, z̄j} = −iδij , {z1, z2} = 0 , (5.19)

where a bar denotes complex conjugation. su(1,1) can be realized as a Poisson algebra by the
generators

K+ = z̄1z̄2, K− = z1z2 K3 = 1
2 (z1z̄1 + z2z̄2) . (5.20)

These satisfy

{K3,K±} = ∓iK±, {K+,K−} = 2iK3 . (5.21)
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This way of realizing the algebra is sometimes called the realization with two harmonic oscillators,
referring to the Poisson brackets of harmonic oscillator variables. We also define the operators

P+ = {K+, ?}, P− = {K−, ?}, P3 = {K3, ?} . (5.22)

In appendix B.1 we show that these close an su(1,1) Lie algebra, with the Lie brackets given by
commutators, i.e.

[P3, P±] = ∓iP±, [P+, P−] = 2iP3 . (5.23)

In view of later application, we now consider a spinor |z〉 and its conjugate 〈z|, defined as

|z〉 =

(
z1

z̄2

)
, 〈z| = (z̄1z2) . (5.24)

We establish a change of basis of the algebras by considering the generators

K1= 1
2 (K+ +K−) , K2= 1

2i (K+ −K−) , K3 , (5.25)

P1 = 1
2 (P+ + P−) , P2 = 1

2i (P+ − P−) , P3 , (5.26)

and we look at their action on the spinors17:

Pj |z〉 = {Kj , ?} |z〉 = {Kj , |z〉}, j = 1, 2, 3 . (5.28)

One finds that

Pj |z〉 = iσj |z〉 (5.29)

with the σj as defined in (5.12). Exponentiating this, one finds that

e~u·
~P |z〉 = e{~u·

~K,?}|z〉 = U |z〉, U = ei~u·~σ ∈ SU(1,1), (5.30)

where we have introduced the vectors ~K = (K1,K2,K3), ~P = (P1, P2, P3), ~σ = (σ1, σ2, σ3) for the
sake of simple notation. This means that the spinor |z〉 belongs to the fundamental representation
of SU(1,1), which is in fact the reason that we call it a spinor.

5.3 The q-Deformation of su(1,1) and its Realization

5.3.1 Definition of suq(1, 1)

The q-deformed su(1,1) algebra, denoted as `uq(1, 1), is defined, in most references (e.g. [15]), by
the Lie brackets

[K3,K±] = ±K± , [K+,K−] = −[2K3]q , (5.31)

17A different way of looking at this would be to simply define the action of the generators Ki on the spinors to be

Ki . |z〉 ≡ {Ki, |z〉} , i = 1, 2, 3 . (5.27)
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where we have defined the quantum number

[x]q ≡
qx − q−x

q − q−1
=

sinh(γx)

sinh(γ)
, γ ≡ ln(q) , (5.32)

in terms of the deformation parameter q ∈ R.18 For our present purposes it is, however, more
convenient to use a slightly different definition. This is for the following reason.
In the Poisson algebra that we will identify on the sLQC phase space (in section 6), the Lie brackets
are given by Poisson brackets. Upon quantizing the model those Poisson brackets will be replaced
by commutators, following the canonical quantization procedure as described in section 3.1,

{A,B} 7→ −i[Â, B̂] . (5.33)

At this point there is no reason not to be ambitious. Therefore we keep in mind that if we are to
obtain a physically interesting system after applying the deformation procedure to our LQC model,
probably we would like to quantize it. And then we would like the quantized system to satisfy the
Lie brackets (given by the commutators) (5.31) of the `uq(1, 1) algebra. This implies that we should
have, on the classical phase space, Poisson brackets that satisfy

{K3,K±} = ∓iK±, {K+,K−} = i[2K3]q . (5.34)

This is what we refer to as the `uq(1, 1) algebra, throughout the rest of this thesis. This is not
uncommon (see e.g. [16]). Note that in the limit q → 1 (γ → 0) (or by explicitly setting q = 1) we
recover the su(1, 1) algebra (5.18).

5.3.2 Realization of suq(1, 1)

Guided by the realization of suq(2) (the q-deformed su(2) algebra) that is discussed in [16] we
define the q-deformed spinor variables

w1 = (γsinhγ)−1/4

√
sinh(γz1z̄1)

z1z̄1
z1e

iγα1(z1z̄1) , (5.35)

w2 = (γsinhγ)−1/4

√
sinh(γz2z̄2)

z2z̄2
z2e

iγα2(z2z̄2) , (5.36)

in terms of the original spinor variables z1 and z2. Here α1(z1z̄1) and α2(z2z̄2) can be arbitrary real
functions. Then `uq(1, 1) can be realized as a Poisson algebra by considering the generators,

Q+ = w̄1w̄2 , Q− = w1w2 , Q3 =
1

2
(z1z̄1 + z2z̄2) . (5.37)

These satisfy (5.34),

{Q3, Q±} = ∓iQ±, {Q+, Q−} = i[2Q3]q . (5.38)

Thus, we have established a general prodecure for deforming an su(1,1) Poisson algebra:

18Note that in the limit q → 1 (γ → 0) (or by explicitly setting q = 1) we recover the su(1, 1) algebra (5.17).
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1. Identify the su(1,1) generators that satisfy (5.21)

2. Write the generators in terms of the spinor variables, in the form (5.20)

3. In the expressions for K+ and K−, replace the spinor variables with the corresponding q-
deformed spinor variables: zi → wi . Leave K3 unchanged.

If these steps are followed, then the new generators should form an suq(1, 1) Poisson algebra. Note
that the procedure is only relevant if step two is possible, which is, of course, not always the case.
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6 Group Theoretical Analysis of the Effective Dynamics

In this section we show how we can obtain the functions v(τ) and b(τ) also by using group
theoretical considerations. We start from the phase space variables b and v satisfying the canonical
Poisson bracket

{b, v} = 1 (6.1)

and identify the following phase space functions

K+ = veib , K− = ve−ib , K3 = v . (6.2)

One can check easily that these form an su(1,1) Poisson algebra, i.e. they satisfy

{K3,K±} = ∓iK± , {K+,K−} = 2iK3 . (6.3)

Changing the basis of the Poisson algebra by considering the real generators

K1 = 1
2 (K+ +K−) = v cos(b) , K2 =

1

2i
(K+ −K−) = v sin(b), K3 = v , (6.4)

we see that the internal19 Hamiltonian Hint = ±
√

12πGv sin(b) of the system is precisely the K2

generator of the algebra times a constant factor,

Hint = ±
√

12πGK2 . (6.5)

In the following we show that this implies that evolution in φ is given by an SU(1,1) transformation.

Wee will consider the minus sign in the definition of the Hamiltonian from this point on. Pick-
ing the other sign will only reverse the direction of (internal) time. Since K+,K−,K3 satisfy the
su(1,1) relations with their Poisson brackets, following section 5.2.1, we know that the operators

P+ = {K+, ?} , P− = {K−, ?} , P3 = {K3, ?} (6.6)

form an su(1,1) Lie algebra with their commutators, i.e.

[P3, P±] = ∓iP± , [P+, P−] = 2iP3 . (6.7)

For this Lie algebra we do an analogous change in basis and we consider the generators

P1 = {K1, ?} , P2 = {K2, ?} , P3 . (6.8)

Now we look at the evolution of b and v. This is given by Hamilton’s equations (4.38) and infinites-
imally those can be written as

v(φ)→ v(φ+δφ) = v(φ) +∂φv δφ= v(φ) + {v(φ), Hint} δφ= v(φ)−{Hint, v(φ)} δφ , (6.9)

b(φ)→ b(φ+δφ) = b(φ) + ∂φb δφ = b(φ) + {b(φ), Hint} δφ = b(φ) −{Hint, b(φ)} δφ . (6.10)

19I will drop the word ‘internal’ from now on, and just call the effective Hamiltonian the Hamiltonian.
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In terms of operators acting on the functions b and v these transformations read

v −−−−−−→
φ→φ+δφ

(1− δφ{Hint, ?}) v , (6.11)

b −−−−−−→
φ→φ+δφ

(1− δφ{Hint, ?}) b . (6.12)

Now from these infinitesimal transformations, we can get a finite transformation over φ by writing
δφ = φ/N and doing N infinitesimal transformations, while letting N tend to infinity. Mathemati-
cally this amounts to taking the limit

v−−−−−−→
φ0→φ0+φ

lim
N→∞

(
1− φ

N
{Hint, ?}

)N
v≡ e−φ{Hint,?}v= eτ{K2,?}v= eτP2 v , (6.13)

b−−−−−−→
φ0→φ0+φ

lim
N→∞

(
1− φ

N
{Hint, ?}

)N
b≡ e−φ{Hint,?} b= eτ{K2,?} b= eτP2 b . (6.14)

To actually compute this transformation we would like to use the spinors |z〉 = (z1, z̄2)T introduced
in section 5.2.1, because we already know how they transform. Therefore we examine if we can write
our generators in terms of those spinors. To see if this is possible, we simply equate our generators
to those in (5.20),

K+= veib
!
= z̄1z̄2 , (6.15)

K−= ve−ib
!
= z1z2 , (6.16)

K3 = v
!
=

1

2
(z1z̄1 + z2z̄2) , (6.17)

and we obtain the following general solution for the spinor variabels as a function of the phase space
variables b and v:

z1(b, v) =
√
ve−ib/2eiθ(b,v) , z2(b, v) =

√
ve−ib/2e−iθ(b,v) , (6.18)

where θ(b, v) can be any real function of b and v. Our generators can thus be written as

K+ = z̄1(b, v) z̄2(b, v) , K− = z1(b, v) z2(b, v) , K3 =
1

2
[ z1(b, v) z̄1(b, v) + z2(b, v) z̄2(b, v) ] .

(6.19)

We can thus extract the evolution of our generators from the evolution of the spinors. Then we can
use the definition of the generators in terms of b and v to find the evolution of those variables. Using
(5.30) and (5.15) and realizing that ~u = (0, τ, 0)⇒ |~u|2 = −τ2 < 0, we have

|z(τ)〉 ≡ eτPy |z(0)〉 = Uτ |z(0)〉 , Uτ = eiτσy =

(
cosh(τ/2) sinh(τ/2)
sinh(τ/2) cosh(τ/2)

)
∈ SU(1,1) . (6.20)

This provides us with two independent equations that we can solve for z1 and for z2. These can then
be substituted in (6.4) using (6.19) to obtain the evolution of the generators

K3(τ) = K3(0)cosh(τ) +K1(0)sinh(τ) , K1(τ) = K3(0)sinh(τ) +K1(0)cosh(τ) . (6.21)
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K2 is, of course, constant, as it is the Hamiltonian. By choosing a different origin point in internal
time, namely τ0 such that K1(τ0) = 0 (which is always possible), we write

K3(τ) = K3(τ0)cosh(τ − τ0) , K1(τ) = K3(τ0)sinh(τ − τ0) , (6.22)

and since K3 = v and K1 = v cos(b), we deduce

v(τ) = v0 cosh(τ − τ0), cos(b) = tanh(τ − τ0). (6.23)

These trajectories are identical to the ones (4.40) obtained by solving Hamilton’s equations in the
conventional way. Although the group theoretical approach might be less straightforward, it offers
insight in structure of the system, the su(1,1) structure, which may be useful in various ways. It
offers e.g. a relatively simple way of quantizing the system; one can quantize the system by using
the irreducible unitary representations of the transformation group SU(1,1) and this has been done
in [7]. This, however, is beyond the purpose of this thesis. But with the su(1,1) structure a new
possibility opens up at the classical level as well. We can try to deform this structure and see if this
leads to interesting new dynamics, like the dynamics generated by a nonzero cosmological constant.
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7 Deformed FRW-Model

7.1 suq(1, 1) Algebra of Phase Space Functions

In this section we use the the deformation procedure developed in section 5.3.2 to deform the
Poisson algebra of phase space functions.
Step 1 is just the identification of the generators

K+ = veib, K− = ve−ib, K3 = v, (7.1)

as we already had in (6.2).
In step 2, we examine if we can write our generators in the form (5.20). But we have already seen
that this is possible in section 6, namely for the spinor variables given by

z1(b, v) =
√
ve−ib/2eiθ(b,v), z2(b, v) =

√
ve−ib/2e−iθ(b,v) . (6.18 revisited)

Our generators can thus be written as

K+ = z̄1(b, v) z̄2(b, v), K− = z1(b, v) z2(b, v), K3 =
1

2
[ z1(b, v) z̄1(b, v) + z2(b, v) z̄2(b, v) ] .

(6.19 revisited)

Finally, step 3 says that the generators can be deformed simply by replacing the spinor variables in
K± by the deformed ones, (5.35) and (5.36), that are now given by

w1 = (γsinhγ)−1/4

√
sinh(γv)

v
z1e

iγα1(v) (7.2)

w2 = (γsinhγ)−1/4

√
sinh(γv)

v
z2e

iγα2(v) . (7.3)

Therefore the deformation is constituted by the replacements

K+ = z̄1z̄2 −→ Q+ = w̄1w̄2 (7.4)

K− = z1z2 −→ Q− = w1w2 (7.5)

K3 =
1

2
(z1z̄1 + z2z̄2) −→ Q3 =

1

2
(z1z̄1 + z2z̄2) . (7.6)

Substituting (7.2) and (7.3) (where we have imposed that α1(v) = −α2(v) = 0 for simplicity) we
compute

Q+ = (γsinhγ)−1/2sinh(γv)eib, Q− = (γsinhγ)−1/2sinh(γv)e−ib, Q3 = v . (7.7)

The deformed generators can also be written in terms of the quantum number [v]q of v as defined in
(5.32) as

Q+ =

√
sinhγ

γ
[v]qe

ib, Q− =

√
sinhγ

γ
[v]qe

−ib, Q3 = v . (7.8)

Indeed, the Qi close an suq(1, 1) Poisson algebra:

{Q3, Q±} = ∓iQ±, {Q+, Q−} = i[2Q3]q . (7.9)
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In the limit q → 1 (γ → 0) (or by explicitly setting q = 1), we recover the original su(1,1) generators20.

We must admit that we have been a little lucky here. The deformation procedure that we have
used assumes that the spinor variables have canonical Poisson brackets:

{zi, z̄j} = −iδij , {z1, z2} = 0 . (7.10)

Our spinor variables (6.18) do not generally satisfy this assumption. It would therefore be natural to
suggest that a particular choice of the function θ(b, v) might provide us with the correct, canonical
Poisson brackets. And that, since the deformed generators do not depend on this function at all,
this would ensure that the deformation procedure works correctly for any choice of the function.
However, it is not possible to find even a single function θ(b, v) such that the Poisson brackets are
canonical. Therefore it might have turned out that the deformed generators computed above would
not have closed the deformed algebra.
Luckily they do though. And this is caused by the fact that actually the requirement that the spinor
variables be canonical is a bit to strong. In principle it should be possible to derive a weaker set
of requirements that the spinor variables should satisfy in order to ensure that both the original
generators and the deformed generators as defined in respectively section 5.2.1 and 5.3.2 close the
correct algebra. And it should be possible to find such a set of requirements, such that our spinor
variables would satisfy those requirements.
Nevertheless, the requirement of the canonical Poisson brackets used in the procedure of section
5.3.2 is perfectly valid; if this requirement is satisfied, then the procedure will always work. The only
thing is that it could be weakened. For our present purposes, however, this is not very important,
since we have already found our deformed generators.

7.2 Deformed Hamiltonian and New Dynamics

Now that we have obtained the deformed generators, the rest is in principle straightforward. In
the undeformed case the Hamiltonian is equal to the K2 generator times a constant factor. In the
deformed case we take the Hamiltonian to be the corresponding deformed generator, Q2, times the
same factor. It is given by

H̃√
12πG

= Q2 ≡
1

2i
(Q+ −Q−) =

√
sinhγ

γ
[v]qsin(b) =

sinh(γv)sin(b)√
γsinhγ

. (7.11)

Note that in the limit q → 1 (γ → 0) (or by explicitly setting q = 1), we recover the original Hamil-
tonian.
The evolution of b and v generated by the deformed Hamiltonian is then given by Hamilton’s equa-
tions

∂v

∂τ
= {v,Q2} = −∂Q2

b
(7.12)

∂b

∂τ
= {b,Q2} =

∂Q2

v
. (7.13)

20Since [v]q → v and sinh(γ)/γ → 1 if γ → 0.
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Taking the derivatives, we get

v̇ ≡ ∂v

∂τ
= − sinh(γv)cos(b)√

γsinh(γ)
ḃ ≡ ∂b

∂τ
=
γcosh(γv)sin(b)√

γsinh(γ)
. (7.14)

Now we differentiate again to obtain two separated differential equations

∂2v

∂τ2
≡ ∂v̇

∂τ
=
∂v̇

∂v

∂v

∂τ
+
∂v̇

∂b

∂b

∂τ
=

1

2

sinh(2γv)

sinh(γ)
(7.15)

∂2b

∂τ2
≡ ∂ḃ

∂τ
=
∂ḃ

∂v

∂v

∂τ
+
∂ḃ

∂b

∂b

∂τ
=
γ

2

sin(2b)

sinh(γ)
. (7.16)

We have solved these equations using Wolfram Mathematica.

7.2.1 The Solution v(τ)

The solution to the v equation, (7.15), is given by

v(τ) = ± i
γ

am

(
i
√
γ
√

csch(γ) + 4γc1τ√
2

∣∣∣∣∣ 2

4γsinh(γ)c1 + 1

)
. (7.17)

Here am(u|m) is the Jacobi amplitude function, csch(γ) = 1/sinh(γ) and c1 ≥ 0 is an integration
constant. We consider the (+) solution and we first examine the in which c1 = 0. The solution
is plotted for γ = 0.1 and γ = 1 in fig. 2a and fig. 2b, respectively. In these plots it is not clear
that the maxima and minima of v are finite. This is the case though, and it is shown in figure 3.
(The seeming irregularity of the maxima and minima is most likely due to numerical errors in the
computation of the Jacobi amplitude function.) By plotting the solution for different values of γ we
find that if γ ≤ 1, then scaling γ corresponds almost exactly to (inversely) scaling the y-axis. More
precisely: γ → αγ corresponds to v(τ)→ v(τ)/α, meaning that in these cases the Jacobi amplitude
function is (nearly) independent of γ. Moreover, the solution is periodic for all γ ≤ 1. For values of
γ ≥ 1 a rescaling of γ corresponds to an inverse rescaling of the y-axis and a scaling of the x-axis.
Those scaling factors vary with the different values of γ. But the point is: for all these values of
γ the overall shape of the curve is the same. For values of γ larger than 700, no solution could be
found.
Now, if we keep γ constant, and we set c1 to a positive nonzero value, this results in the x- and
y-axis being rescaled and the curve being changed only slightly; the characteristic shape of the curve
remains the same (fig. 4a and fig. 4b). We also note that rescaling γ → αγ and c1 → α−2c1 leads to
a rescaling v(τ)→ v(τ)/α.

7.2.2 The Solution b(τ)

The solution to the b equation, (7.16), is given by

b(τ) = ±am

(√
(c3 + τ)2(c2 − γcsch(γ))| γ

γ − c2sinh(γ)

)
, (7.18)

where c2 and c3 are integration constants. We can set c3 = 0 to analyze the solutions, since a
non-zero value will amount only to a translation in τ . Furthermore we redefine c→ (γsinh(γ)c2 + 1
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(a) (b)

Figure 2: Two plots of trajectories of v(τ) for c1 = 0 and for different values of γ. The trajectories
are generated by the deformed Hamiltonian. Note that the rescaling of γ amounts to an inverse
rescaling in the y-axis with the same factor, meaning that v(τ) ∝ 1/γ.

Figure 3: Plot of the trajectory of v(τ) for γ = 0.1 and c1 = 0. The trajectory is generated by the
deformed Hamiltonian. From this plot it is clear that the maxima and minima of v are finite.
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(a) (b)

Figure 4: Two plots of trajectories of v(τ) for γ = 0.1 and different values of c1. The trajectories
are generated by the deformed Hamiltonian. It evident that, in this this case for α = 0.1, a rescaling
γ → αγ and c1 → α−2c1 leads to a rescaling v(τ)→ v(τ)/α .

to obtain the solution in a simpler form

b(τ) = ±am

(√
γcτ2 csch(γ)|−1

c

)
. (7.19)

For physically relevant solutions we must have c > 0, for otherwise the solution has a non-vanishing
imaginary part. The overall characteristics of all the (c > 0) solutions are the same. Figure 5 shows
three cases.

7.2.3 Cosmological Evolution in the Deformed Model

Now that we have the trajectories of b and v, the quality of interest is the volume of the cell
V that, due to homogeneity, represents the volume of the universe. It is related to v by V ∝ |v|.
The trajectory of the volume is plotted in figure 6. The main characteristics of the trajectory of the
volume are independent for the different values of the parameters, so this plot is representative for all
cases. If we start, say, at τ = 0, and we look at the cosmological evolution, we see the following. The
universe starts with a Big Bang singularity, it then expands until it reaches a maximal volume, and
then abruptly21 it starts contracting again to eventually collapse in a Big Crunch singularity. Then
the process repeats. (The seeming irregularity of the peaks we assume to be due to numerical errors.)

7.2.4 Comparison and Discussion

We have succeeded in finding a deformed (internal) Hamiltonian (7.11) that corresponds with a
deformation of the su(1,1) Poisson algebra on the phase space of effective sLQC. In the best scenario
we would have been able to identify this Hamiltonian as the (internal) Hamiltonian (see appendix C
of effective LQC with a nonzero cosmological constant. The two Hamiltonians are, however, clearly

21We do not have a well defined relation between proper time t and τ in the deformed model, so it is possible that
this change is only abrupt in τ , and not in t.
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Figure 5: Three plots of trajectories of b(τ) generated by the deformed Hamiltonian for different
values of γ and c. The curves are all different, but the overall characteristics are the same.
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Figure 6: Trajectory of the absolute value of v, which is proportional to the volume of the cell V,
representing the volume of the universe. The trajectory is generated by the deformed Hamiltonian.
The plot shows that the universe starts with a Big Bang singularity (e.g. τ = 0), expands until
it reaches a maximal volume, and then contracts again to eventually collapse in a Big Crunch
singularity. Then the process repeats.
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(a) (b)

Figure 7: The trajectories of the expectation values of the volume operator in the flat FRW model
coupled to a scalar field in LQC, for a (a) negative cosmological constant (b) positive cosmological
constant. The first ones to produce plots like these were Ashtekar A., Pawlowski T. and Singh P.
The ones that are shown here are taken from [17].

different. We not recognize the deformed Hamiltonian as belonging to a different model within LQC
either. What one might want to do in such a case is do a Taylor expansion in the deformation
parameter γ to see if the Hamiltonians match for small values of γ. In this case, however, if we
expand (7.11) in γ we expand automatically also in v, due to the term with sinh(γv). Discarding
high order terms in γ then means also discarding high order terms in v and hence the result will
only be valid for small values of v (around the bounce).22

As opposed to comparing the Hamiltonians, we can as well compare the trajectory of the volume
in the deformed model (fig. 6) with its trajectory in LQC with non-vanishing cosmological constant
(fig. 7). Our trajectories do not match these trajectories exactly, but there are definitely similarities.
The trajectories are all (nearly) periodic and bound from above and from below, and they share
the same characteristics; their overall shape is very similar. However, in our model the minimum
volume is zero, whereas in LQC it is non-zero (the singularity is resolved). Also, in the LQC model,
the trajectories are smooth at the points of maximum and minimum volume, whereas in our case we
have a discontinuity at minimum volume and an abrupt change at maximum volume as well, that
looks more abrupt than in LQC.
We must conclude that we cannot encode the cosmological constant in the effective sLQC model
through the su(1,1) deformation of the Poisson algebra of phase space functions, developed in this
thesis. The realization of the deformation that we used is, however, not unique. In appendix D
we give an example of an alternative realization of suq(1, 1) on the effective sLQC phase space,
resulting in a different deformed Hamiltonian. Although that Hamiltonian does not generate the
desired dynamics either, it illustrates and sresses the fact that different realizations exist. This
fact, together with the presence of the discussed similarities between the (main) deformed model
and genuine LQC, should be seen, in my opinion, as an encouragement to further investigate the
realizations of the deformation of the su(1,1) Poisson algebra on the effective sLQC phase space, to
try to find one through which we can in fact encode the cosmological constant in the model.

22And even if we do this expansion anyway, the terms do not match.
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APPENDIX

A The Covariant Derivative

The action of the covariant derivative ∇ρ on a general tensor Tµ1,...,µm
ν1,...,νn is defined as

∇ρTµ1,...,µm
ν1,...,νn ≡ Tµ1,...,µm

ν1,...,νn;ρ ≡ ∂ρTµ1,...,µm
ν1,...,νn

+

m∑
k=1

ΓµkρσT
µ1,...,µk−1,σ,µk+1,...,µm

ν1,...,νn

−
n∑
k=1

ΓσρνkT
µ1,...,µm

ν1,...,νk−1,σ,νk+1,...,νn . (A.1)

This translates e.g. into the more practical statements

∇ρTµ ≡ Tµ;ρ ≡ ∂ρTµ + ΓµρσT
σ , (A.2)

∇ρTν ≡ Tν;ρ ≡ ∂ρTν − ΓσρνTσ , (A.3)

∇ρTµν ≡ Tµν;ρ ≡ ∂ρTµν + ΓµρσT
σ
ν − ΓσρνT

µ
σ , (A.4)

where Γρµν is the Chirstoffel symbol (see section 2.2).
The spatial covariant derivative Dc associated with an induced spatial metric hab is defined as

DcT
a1···ak

b1···bl = ha1d1 · · ·hblelhcf∇fT d1···dke1···el . (A.5)

This spatial covariant derivative is uniquely determined by hab such that is satisfies Dahbc = 0.

B The Poisson Bracket

The Poisson bracket of two phase space functions f and g is defined as

{f, g} =
∑
i

(
∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi

)
, (B.1)

where the sum runs over all pairs of (generalized) coordinates and their conjugate momenta. The
Poisson bracket has the following properties for phase space functions f , g, and h:

{f, g} = −{g, f} (antisymmetry), (B.2)

{f + g, h} = {f, h}+ {g, h} (linearity), (B.3)

{fg, h} = {f, h}g + f{g, h} (Leibniz rule), (B.4)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity). (B.5)

Furthermore there is the following property.

Proposition 1. For any complete set of phase space functions uk({xi, pi}), vk({xi, pi}) we have

{f, g} =
∑
k,l

(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)
{uk, vl} . (B.6)
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Proof. We can write

df =
∑
k

(
∂f

∂uk
duk +

∂f

∂vk
duk

)
⇒ ∂f

∂xi
=
∑
k

(
∂f

∂uk

∂uk
∂xi

+
∂f

∂vk

∂uk
∂xi

)
, (B.7)

and analogously for ∂f/∂pi, ∂g/∂xi and ∂g/∂pi. Therefore we can write

∂f

∂xi

∂g

∂pi
=
∑
k,l

(
∂f

∂uk

∂uk
∂xi

+
∂f

∂vk

∂uk
∂xi

)(
∂g

∂ul

∂ul
∂pi

+
∂g

∂vl

∂ul
∂pi

)

=
∑
k,l

(
∂f

∂uk

∂uk
∂xi

∂g

∂ul

∂ul
∂pi

+
∂f

∂uk

∂uk
∂xi

∂g

∂vl

∂vl
∂pi

+
∂f

∂vk

∂vk
∂xi

∂g

∂ul

∂ul
∂pi

+
∂f

∂vk

∂vk
∂xi

∂g

∂vl

∂vl
∂pi

)
, (B.8)

and
∂g

∂xi

∂f

∂pi
=
∑
k,l

(
∂g

∂uk

∂uk
∂xi

+
∂g

∂vk

∂uk
∂xi

)(
∂f

∂ul

∂ul
∂pi

+
∂f

∂vl

∂ul
∂pi

)

=
∑
k,l

(
∂g

∂uk

∂uk
∂xi

∂f

∂ul

∂ul
∂pi

+
∂g

∂uk

∂uk
∂xi

∂f

∂vl

∂vl
∂pi

+
∂g

∂vk

∂vk
∂xi

∂f

∂ul

∂ul
∂pi

+
∂g

∂vk

∂vk
∂xi

∂f

∂vl

∂vl
∂pi

)
. (B.9)

The Poisson bracket of f and g is then obtained by subtracting (B.9) from (B.8) and summing over
i. The resulting expression is

{f, g} =
∑
i,k,l

(
∂f

∂uk

∂uk
∂xi

∂g

∂ul

∂ul
∂pi

+
∂f

∂uk

∂uk
∂xi

∂g

∂vl

∂vl
∂pi

+
∂f

∂vk

∂vk
∂xi

∂g

∂ul

∂ul
∂pi

+
∂f

∂vk

∂vk
∂xi

∂g

∂vl

∂vl
∂pi

− ∂g

∂uk

∂uk
∂xi

∂f

∂ul

∂ul
∂pi
− ∂g

∂uk

∂uk
∂xi

∂f

∂vl

∂vl
∂pi
− ∂g

∂vk

∂vk
∂xi

∂f

∂ul

∂ul
∂pi
− ∂g

∂vk

∂vk
∂xi

∂f

∂vl

∂vl
∂pi

)
. (B.10)

By relabeling dummy indices, we see that the 1st term cancels the 5th, and the 4th term cancels the
8th, so we can write

{f, g} =
∑
i,k,l

(
∂f

∂uk

∂uk
∂xi

∂g

∂vl

∂vl
∂pi

+
∂f

∂vk

∂vk
∂xi

∂g

∂ul

∂ul
∂pi
− ∂g

∂uk

∂uk
∂xi

∂f

∂vl

∂vl
∂pi
− ∂g

∂vk

∂vk
∂xi

∂f

∂ul

∂ul
∂pi

)

=
∑
i,k,l

[(
∂uk
∂xi

vl
∂pi

)(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)
−
(
∂vk
∂xi

ul
∂pi

)(
∂g

∂vk

∂f

∂ul
− ∂f

∂vk

∂g

∂ul

)]
. (B.11)

Now we explicitly interchange the (dummy) labels k and l in the right half of the last line of this
equation. Then we obtain

{f, g} =
∑
i,k,l

[(
∂uk
∂xi

vl
∂pi

)(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)
−
(
∂vl
∂xi

uk
∂pi

)(
∂g

∂vl

∂f

∂uk
− ∂f

∂vl

∂g

∂uk

)]

=
∑
i,k,l

[(
∂uk
∂xi

vl
∂pi

)(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)
−
(
uk
∂pi

∂vl
∂xi

)(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)]

=
∑
k,l

(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)∑
i

(
∂uk
∂xi

vl
∂pi
− uk
∂pi

∂vl
∂xi

)
(B.12)

=
∑
k,l

(
∂f

∂uk

∂g

∂vl
− ∂g

∂uk

∂f

∂vl

)
{uk, vl} , (B.13)
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which is what we wanted to prove.

Corollary. For a two-dimensional phase space we have

{f, g} =

(
∂f

∂u

∂g

∂v
− ∂g

∂u

∂f

∂v

)
{u, v} (B.14)

for any complete pair of phase space functions.

B.1 From Poisson (Bracket) Algebras to (Commutator) Lie Algebras

If one has a Poisson algebra, then in many cases one can construct a corresponding Lie algebra,
where the Lie bracket is given by the commutators. This is the result of the following proposition.

Proposition 2. Assume that we have phase space functions A and B that have the Poisson bracket
{A,B} = C, for another phase space function C. Then the commutator of the operators PA = {A, ?}
and PB = {B, ?} is given by [PA, PB ] = PC , where PC = {C, ?}.

Proof. We let the operators act on a scalar variable x and begin by writing out

PBx = {B, ?}x = {B, x} =
∑
i

(
∂B

∂xi

∂x

∂pi
− ∂B

∂pi

∂x

∂xi

)
, (B.15)

PAx = {A, ?}x = {A, x} =
∑
i

(
∂A

∂xi

∂x

∂pi
− ∂A

∂pi

∂x

∂xi

)
. (B.16)

Then we can write

PAPBx = {A,PBx} =

{
A,
∑
l

(
∂B

∂xl

∂x

∂pl
− ∂B

∂pl

∂x

∂xl

)}

=
∑
k,l

(
∂A

∂xk

∂2B

∂pkxl

∂x

∂pl
+
∂A

∂xk

∂B

∂xl

∂2x

∂pl∂pk
− ∂A

∂xk

∂2B

∂pk∂pl

∂x

∂xl
− ∂A

∂xk

∂B

∂pl

∂2x

∂xl∂pk

− ∂A
∂pk

∂2B

∂xk∂xl

∂x

∂pl
− ∂A

∂pk

∂B

∂xl

∂2x

∂xk∂pl
+
∂A

∂pk

∂2B

∂xk∂pl

∂x

∂xl
+
∂A

∂pk

∂B

∂pl

∂2x

∂xl∂xk

)
. (B.17)
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And for PBPAx we get the same expression but with A and B interchanged. We can therefore write

[PA, PB ]x = PAPBx− PBPAx

=
∑
k,l

(
∂A

∂xk

∂2B

∂pkxl

∂x

∂pl
+
∂A

∂xk

∂B

∂xl

∂2x

∂pl∂pk
− ∂A

∂xk

∂2B

∂pk∂pl

∂x

∂xl
− ∂A

∂xk

∂B

∂pl

∂2x

∂xl∂pk

− ∂A

∂pk

∂2B

∂xk∂xl

∂x

∂pl
− ∂A

∂pk

∂B

∂xl

∂2x

∂xk∂pl
+
∂A

∂pk

∂2B

∂xk∂pl

∂x

∂xl
+
∂A

∂pk

∂B

∂pl

∂2x

∂xl∂xk

− ∂B
∂xk

∂2A

∂pkxl

∂x

∂pl
− ∂B

∂xk

∂A

∂xl

∂2x

∂pl∂pk
+
∂B

∂xk

∂2A

∂pk∂pl

∂x

∂xl
+
∂B

∂xk

∂A

∂pl

∂2x

∂xl∂pk

+
∂B

∂pk

∂2A

∂xk∂xl

∂x

∂pl
+
∂B

∂pk

∂A

∂xl

∂2x

∂xk∂pl
− ∂B

∂pk

∂2A

∂xk∂pl

∂x

∂xl
− ∂B

∂pk

∂A

∂pl

∂2x

∂xl∂xk

)
. (B.18)

By relabeling dummy indices we see that all terms with second derivatives of x cancel each other, as
the 2nd term cancels the 10th term, the 4th term cancels the 14th, the 6th term cancels the 12th,
and the 8th term cancels the 16th. Hence we have

[PA, PB ]x = PAPBx− PBPAx

=
∑
k,l

(
∂A

∂xk

∂2B

∂pkxl

∂x

∂pl
− ∂A

∂xk

∂2B

∂pk∂pl

∂x

∂xl
− ∂A

∂pk

∂2B

∂xk∂xl

∂x

∂pl
+
∂A

∂pk

∂2B

∂xk∂pl

∂x

∂xl

− ∂B
∂xk

∂2A

∂pkxl

∂x

∂pl
+
∂B

∂xk

∂2A

∂pk∂pl

∂x

∂xl
+
∂B

∂pk

∂2A

∂xk∂xl

∂x

∂pl
− ∂B

∂pk

∂2A

∂xk∂pl

∂x

∂xl

)
. (B.19)

This is the LHS of the formula that we want to prove. For the RHS we use the relation C = {A,B}
and write out

PCx = {C, x} = {{A,B}, x} =
∑
k

{
∂A

∂xk

∂B

∂pk
− ∂A

∂pk

∂B

∂xk
, x

}
=
∑
k,l

(
∂2A

∂xk∂xl

∂B

∂pk

∂x

∂pl
+
∂A

∂xk

∂2B

∂pkxl

∂x

∂pl
− ∂2A

∂pk∂xl

∂B

∂xk

∂x

∂pl
− ∂A

∂pk

∂2B

∂xk∂xl

∂x

∂pl

− ∂2A

∂xk∂pl

∂B

∂pk

∂x

∂xl
− ∂A

∂xk

∂2B

∂pk∂pl

∂x

∂xl
+

∂2A

∂pk∂pl

∂B

∂xk

∂x

∂xl
+
∂A

∂pk

∂2B

∂xk∂pl

∂x

∂xl

)
. (B.20)

Comparing (B.19) and (B.20), we see that the expressions are identical, and so we have

∀x : [PA, PB ]x = PCx ⇒ [PA, PB ] = PC , (B.21)

which is what we wanted to prove.
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Corollary. If J+, J−, J3 are phase space functions that form an su(1, 1) Poisson algebra, i.e.

{J3, J±} = ∓iJ±, {J+, J−} = 2iJ3 , (B.22)

then the operators

P+ = {J+, ?}, P− = {J−, ?}, P3 = {J3, ?} (B.23)

form an su(1,1) Lie algebra with their commutators, i.e.

[P3, P±] = ∓iP±, [P+, P−] = 2iP3 . (B.24)

C Effective Internal Hamiltonian for a Nonzero Cosmologi-
cal Constant

The gravitational (integrated) Hamiltonian Constraint for the (k = 0, Λ = 0) FRW-model,
coupled to a scalar field reads

C =
p2
φ

8πG|v|
− 3

2
b2|v| = 0 , (C.1)

When the cosmological constant Λ is nonzero (but still k = 0), this constraint gets an additional
term and it is modified to

C =
p2
φ

8πG|v|
− 3

2
b2|v|+ 1

2
Λ|v| = 0 , (C.2)

The effective dynamics is obtained by replacing b → sin(λb)/λ for a constant λ ∈ R. The effective
constraint then reads

C(eff) = −3

2

sin2(λb)

λ2
|v|+

p2
φ

8πG|v|
+

1

2
Λ|v| = 0 , (C.3)

Just as we did in the case of a vanishing cosmological constant, we change variables, according to
the canonical transformation v → v′ = v/λ, b→ b′ = λb, and redefine v := v′, b := b′, the constraint
then reads

C(eff) = −3

2

sin2(b)

|λ|
|v|+

p2
φ

8πG|λ||v|
+

1

2
Λ|λ||v| = 0 . (C.4)

By inverting this relation we find the expression of the internal Hamiltonian (the scalar field mo-
mentum),

Hint = pφ = ±
√

12πGv
√

sin2(b)− 1
3λ

2Λ . (C.5)

The evolution (in φ) that this Hamiltonian generates is an excellent approximation to the genuine
quantum dynamics with a nonzero cosmological constant.
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D Alternative Deformation

The realization of suq(1, 1) that we have established on the effective LQC phase phase is not
unique. In this section we establish a different realization of the algebra and show that this leads to
a different deformed Hamiltonian. Although this Hamiltonian will prove to be a complex function,
it illustrates the fact that the deformed dynamics that we have found in this thesis is not the only
option. It emphasizes the possibility that there might be an even different realization out there, that
would in fact lead to the inclusion of a cosmological constant in the model under consideration.

D.1 Alternative Realization of suq(1, 1)

su(1,1) can be realized in terms two complex variables a+ and a− that satisfy the Poisson bracket

{a+, a−} = −i. (D.1)

Writing N = a+a−, the su(1,1) Poisson algebra is realized by the generators

K+ = a+a+a− = Na+ , K− = a− , K3 = a+a− = N , (D.2)

that satisfy (5.18). To deform the algebra we take the following ansatz

Q+ = F (N)a+ , Q− = F (N)a− , Q3 = K3 = N , (D.3)

for any function F(N) of N. We then automatically have the correct Poisson brackets {Q3, Q±} =
∓iQ±. To get the right function F(N) we impose the other Poisson bracket of the algebra:

i[2K3]q = {Q+, Q−} = a+F (N){F (N), a−}+ a−F (N){a+, F (N)}+ iF (N)2 . (D.4)

Using the property of the Poisson bracket (B.14) and multiplying both sides by −i this is equivalent
to

[2N ]q = 2NF
∂F

∂N
+ F 2. (D.5)

This equation can be simplified by writing F =
√
G, leading to

[2N ]q = N
∂G

∂N
+G , (D.6)

and next we write G̃ = (2sinh(γ))−1G to obtain the equation in its final form

q2N − q−2N = N
∂G̃

∂N
+ G̃ . (D.7)

The equation is solved by

G̃(N) =
c1
N

+
q2N + q−2N

2Nln(q)
, (D.8)
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where c1 is an arbitrary integration constant. Setting c1 = 0 for simplicity and translating this back
to F(N) we have the solution

F (N) =

√
q2N + q−2N

2Nln(q)(q − q−1)
=

√
1

2Nγ

cosh(2γN)

sinh(γ)
. (D.9)

One can check that indeed the generators

Q+ =

√
1

2Nγ

cosh(2γN)

sinh(γ)
a+ , Q− =

√
1

2Nγ

cosh(2γN)

sinh(γ)
a− , Q3 = N (D.10)

close a suq(1, 1) algebra.

D.2 Application to the Effective sLQC Phase Space

We will now apply the procedure developed above to the effective sLQC phase space. We start
with our phase space functions

K+ = veib , K− = ve−ib , K3 = v , (D.11)

that form a su(1,1) Poisson algebra. We are now going to write the generators in the form (D.2).
By equating the corresponding generators we find

a+ = eib , a− = ve−ib . (D.12)

We can now write our generators in terms of a+ and a− and deform the algebra according to section
D.1.

K+=a+a+a− = Na+ −→ Q+=F (N)a+ (D.13)

K−=a− −→ Q−=F (N)a− (D.14)

K3 =a+a− = N −→ Q3 =K3 = N (D.15)

Substituting everything, the deformed generators read

Q+ =

√
1

2vγ

cosh(2γv)

sinh(γ)
eib , Q− =

√
1

2vγ

cosh(2γv)

sinh(γ)
ve−ib , Q3 = v (D.16)

and one can check that they indeed form a suq(1, 1) algebra. Now we would like to define the

deformed Hamiltonian as H̃ = Qy, but we have a problem: since Q+ and Q− are not each others
complex conjugate, Qy ∈ C is not real, and a Hamiltonian should, of course, always be real, since it
corresponds with the total energy of the system23.

Qy ≡
1

2i
(Q+ −Q−) =

1

2i

√
1

2vγ

cosh(2γv)

sinh(γ)

(
eib − ve−ib

)
. (D.17)

The Hamiltonian defined by this alternative realization of su(1,1) is therefore not a physical Hamil-
tonian and it doesn’t generate any physical dynamics.

23In this case it actually corresponds to the momentum of the scalar field, since we’re dealing with the internal
Hamiltonian.
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